QH53
C7
Comstock, Mrs. Anna (Botsford)
Handbook of nature-study for teachers and parents...
DATE
18 D '26
28 My '27
12 My '28
18 D '29
22 My '30
17 My '31
18 D '31
AUG 1 2002
19686
HANDBOOK OF
NATURE-STUDY

For Teachers and Parents

Based on the Cornell Nature-Study Leaflets, with Much Additional Material and Many New Illustrations

By ANNA BOTSFORD COMSTOCK, B. S.
Lecturer in Nature-Study in Cornell University; Author of How to Keep Bees, and Ways of the Six-Footed; Illustrator and Engraver for Manual for the Study of Insects and for Insect Life

IN TWO VOLUMES
VOL. I
INCLUDING PARTS I AND II

ITHACA, N. Y.
COMSTOCK PUBLISHING COMPANY
1912
TO

LIBERTY HYDE BAILEY

 UNDER WHOSE WISE, STAUNCH AND INSPIRING LEADERSHIP THE NATURE-STUDY WORK AT CORNELL UNIVERSITY HAS BEEN ACCOMPLISHED

 AND TO MY CO-WORKER

JOHN WALTON SPENCER

 WHOSE COURAGE, RESOURCEFULNESS AND UNTIRING ZEAL WERE POTENT FACTORS IN THE SUCCESS OF THE CAUSE

 THIS BOOK IS DEDICATED
PREFACE

The Cornell University Nature-Study propaganda was essentially an agricultural movement in its inception and its aims; it was inaugurated as a direct aid to better methods of agriculture in New York State. During the years of agricultural depression 1891–1893, the Charities of New York City found it necessary to help many people who had come from the rural districts—a condition hitherto unknown. The philanthropists managing the Association for Improving the Condition of the Poor asked, “What is the matter with the land of New York State that it cannot support its own population?” A conference was called to consider the situation to which many people from different parts of the State were invited; among them was the author of this book, who little realized that in attending that meeting the whole trend of her activities would be thereby changed. Mr. George T. Powell, who had been a most efficient Director of Farmers’ Institutes of New York State was invited to the conference as an expert to explain conditions and give advice as to remedies. The situation seemed so serious that a Committee for the Promotion of Agriculture in New York State was appointed. Of this committee the Honorable Abram S. Hewitt was Chairman, Mr. R. Fulton Cutting, Treasurer, Mr. Wm. H. Tolman, Secretary. The other members were Walter L. Suydam, Wm. E. Dodge, Jacob H. Schiff, George T. Powell, G. Howard Davidson, Howard Townsend, Professor I. P. Roberts, C. McNamee, Mrs. J. R. Lowell, and Mrs. A. B. Comstock. Mr. George T. Powell was made Director of the Department of Agricultural Education.

At the first meeting of this committee Mr. Powell made a strong plea for interesting the children of the country in farming as a remedial measure, and maintained that the first step toward agriculture was nature-study. It had been Mr. Powell’s custom to give simple agricultural and nature-study instruction to the school children of every town where he was conducting a farmers’ institute, and his opinion was, therefore, based upon experience. The committee desired to see for itself the value of this idea, and experimental work was suggested, using the schools of Westchester County as a laboratory. Mr. R. Fulton Cutting generously furnished the funds for this experiment, and work was done that year in the Westchester schools, which satisfied the committee of the soundness of the project.

The committee naturally concluded that such a fundamental movement must be a public rather than a private enterprise; and Mr. Frederick Nixon then Chairman of the Ways and Means Committee of the Assembly, was invited to meet with the committee at Mr. Hewitt’s home. Mr. Nixon had been from the beginning of his public career deeply interested in improving the farming conditions of the State. In 1894, it was through
his influence and the support given him by the Chautauqua Horticultural Society under the leadership of Mr. John W. Spencer, that an appropriation had been given to Cornell University for promoting the horticultural interests of the western counties of the State. In addition to other work done through this appropriation, horticultural schools were conducted under the direction of Professor L. H. Bailey with the aid of other Cornell instructors and especially of Mr. E. G. Lodeman; these schools had proved to be most useful and were well attended. Therefore, Mr. Nixon was open-minded toward an educational movement. He listened to the plan of the committee and after due consideration declared that if this new measure would surely help the farmers of the State, the money would be forthcoming. The committee unanimously decided that if an appropriation were made for this purpose it should be given to the Cornell College of Agriculture; and that year eight thousand dollars was added to the Cornell University Fund, for Extension Teaching and inaugurating this work. The work was begun under Professor I. P. Roberts; after one year Professor Roberts placed it under the supervision of Professor L. H. Bailey, who for the fifteen years since has been the inspiring leader of the movement, as well as the official head.

In 1896, Mr. John W. Spencer, a fruit grower in Chautauqua County, became identified with the enterprise; he had lived in rural communities and he knew their needs. He it was who first saw clearly that the first step in the great work was to help the teacher through simply written leaflets; and later he originated the great plan of organizing the children in the schools of the State into Junior Naturalists Clubs, which developed a remarkable phase of the movement. The members of these clubs paid their dues by writing letters about their nature observations to Mr. Spencer, who speedily became their beloved "Uncle John," a button and charter were given for continued and earnest work. Some years, 30,000 children were thus brought into direct communication with Cornell University through Mr. Spencer. A monthly leaflet for Junior Naturalists followed; and it was to help in this enterprise that Miss Alice G. McCloskey, the able Editor of the present Rural School Leaflet, was brought into the work. Later, Mr. Spencer organized the children's garden movement by forming the children of the State into junior gardeners; at one time he had 25,000 school pupils working in gardens and reporting to him.

In 1899, Mrs. Mary Rogers Miller, who had proven a most efficient teacher when representing Cornell nature-study in the State Teachers' Institutes, planned and started the Home Nature-Study Course Leaflets for the purpose of helping the teachers by correspondence, a work which fell to the author in 1903 when Mrs. Miller was called to other fields.

For the many years during which New York State has intrusted this important work to Cornell University, the teaching of nature-study has
gone steadily on in the University, in teachers' institutes, in State summer schools, through various publications and in correspondence courses. Many have assisted in this work, notably Dr. W. C. Thro, Dr. A. A. Allen, and Miss Ada Georgia. The New York Education Department with Charles R. Skinner as Commissioner of Education and Dr. Isaac Stout as the Director of Teachers' Institutes co-operated heartily with the movement from the first. Later with the co-operation of Dr. Andrew Draper, as Commissioner of Education, many of the Cornell leaflets have been written with the special purpose of aiding in carrying out the New York State Syllabus in Nature-Study and Agriculture.

The leaflets upon which this volume is based were published in the Home Nature-Study Course during the years 1903-1911, in limited editions and were soon out of print. It is to make these lessons available to the general public that this volume has been compiled. While the subject matter of the lessons herein given is essentially the same as in the leaflets, the lessons have all been rewritten for the sake of consistency, and many new lessons have been added to bridge gaps and make a coherent whole.

Because the lessons were written during a period of so many years, each lesson has been prepared as if it were the only one, and without reference to others. If there is any uniformity of plan in the lessons, it is due to the inherent qualities of the subjects, and not to a type plan in the mind of the writer; for, in her opinion, each subject should be treated individually in nature-study; and in her long experience as a nature-study teacher she has never been able to give a lesson twice alike on a certain topic or secure exactly the same results twice in succession. It should also be stated that it is not because the author undervalues physics nature-study that it has been left out of these lessons, but because her own work has been always along biological lines.

The reason why nature-study has not yet accomplished its mission, as thought-core for much of the required work in our public schools, is that the teachers are as a whole untrained in the subject. The children are eager for it, unless it is spoiled in the teaching; and whenever we find a teacher with an understanding of out-of-door life and a love for it, there we find nature-study in the school is an inspiration and a joy to pupils and teacher. It is because of the author's sympathy with the untrained teacher and her full comprehension of her difficulties and helplessness that this book has been written. These difficulties are chiefly three-fold: The teacher does not know what there is to see in studying a plant or animal; she knows little of the literature that might help her; and because she knows so little of the subject, she has no interest in giving a lesson about it. As a matter of fact, the literature concerning our common animals and plants is so scattered that a teacher would need a large library and almost unlimited time to prepare lessons for an extended nature-study course.
The writer's special work for fifteen years in Extension teaching has been the helping of the untrained teacher through personal instruction and through leaflets. Many methods were tried and finally there was evolved the method followed in this volume: All the facts available and pertinent concerning each topic have been assembled in the "Teacher's story" to make her acquainted with the subject; this is followed by an outline for observation on the part of the pupils while studying the object. It would seem that with the teacher's story before the eyes of the teacher, and the subject of the lesson before the eyes of the pupils with a number of questions leading them to see the essential characteristics of the object, there should result a wider knowledge of nature than is given in this or any other book.

That the lessons are given in a very informal manner, and that the style of writing is often colloquial, result from the fact that the leaflets upon which the book is based were written for a correspondence course in which the communications were naturally informal and chatty. That the book is meant for those untrained in science accounts for the rather loose terminology employed; as, for instance, the use of the word seed in the popular sense whether it be a drupe, an akene, or other form of fruit; or the use of the word pod for almost any seed envelope, and many like instances. Also, it is very likely, that in teaching quite incidentally the rudiments of the principles of evolution, the results may often seem to be confused with an idea of purpose, which is quite unscientific. But let the critic labor for fifteen years to interest the untrained adult mind in nature's ways, before he casts any stones! And it should be always borne in mind that if the author has not dipped deep in the wells of science, she has used only a child's cup.

For many years requests have been frequent from parents who have wished to give their children nature interests during vacations in the country. They have been borne in mind in planning this volume; the lessons are especially fitted for field work, even though schoolroom methods are so often suggested.

The author feels apologetic that the book is so large. However, it does not contain more than any intelligent country child of twelve should know of his environment; things that he should know naturally and without effort, although it might take him half his life-time to learn so much if he should not begin before the age of twenty. That there are inconsistencies, inaccuracies, and even blunders in the volume is quite inevitable. The only excuse to be offered is that, if through its use, the children of our land learn early to read nature's truths with their own eyes, it will matter little to them what is written in books.

The author wishes to make grateful acknowledgment to the following people: To Professor Wilford M. Wilson for his chapter on the weather; to Miss Mary E. Hill for the lessons on mould, bacteria, the minerals, and reading the weather maps; to Miss Catherine Straith for the lessons on
the earthworm and the soil; to Miss Ada Georgia for much valuable assistance in preparing the original leaflets on which these lessons are based; to Dean L. H. Bailey and to Dr. David S. Jordan for permission to quote their writings; to Mr. John W. Spencer for the use of his story on the movements of the sun; to Dr. Grove Karl Gilbert, Dr. A. C. Gill, Dr. Benjamin Duggar, Professor S. H. Gage and Dr. J. G. Needham for reading and criticizing parts of the manuscript; to Miss Eliza Tonks for reading the proof; to the Director of the College of Agriculture for use of the engravings made for the original leaflets; to Miss Martha Van Rensselaer for the use of many pictures from Boys and Girls; to Professor Cyrus Crosby, and to Messrs. J. T. Lloyd, A. A. Allen and R. Matheson for the use of their personal photographs; to the U. S. Geological Survey and the U. S. Forest Service for the use of photographs; to Louis A. Fuertes for drawings of birds; to Houghton, Mifflin & Company for the use of the poems of Lowell, Harte and Larcom, and various extracts from Burroughs and Thoreau; to Small, Maynard & Company and to John Lane & Company for the use of poems of John T. Babb; to Doubleday, Page & Company for the use of pictures of birds and flowers; and to the American Book Company for the use of electrotypes of dragon-flies and astronomy. Especially thanks are extended to Miss Anna C. Stryke for numerous drawings, including most of the initials
TABLE OF CONTENTS

PART I

THE TEACHING OF NATURE-STUDY

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What Nature-Study is</td>
<td>1</td>
</tr>
<tr>
<td>What Nature-Study Should do for the Child</td>
<td>1</td>
</tr>
<tr>
<td>Nature-Study as a Help to Health</td>
<td>2</td>
</tr>
<tr>
<td>What Nature-Study Should do for the Teacher</td>
<td>2</td>
</tr>
<tr>
<td>When and Why the Teacher Should say “I do not know!”</td>
<td>3</td>
</tr>
<tr>
<td>Nature-Study, The Elixir of Youth</td>
<td>4</td>
</tr>
<tr>
<td>Nature-Study as a Help in School Discipline</td>
<td>4</td>
</tr>
<tr>
<td>The Relation of Nature-Study to Science</td>
<td>5</td>
</tr>
<tr>
<td>Nature-Study not for Drill</td>
<td>6</td>
</tr>
<tr>
<td>The Child not Interested in Nature-Study</td>
<td>6</td>
</tr>
<tr>
<td>When to Give the Lesson</td>
<td>7</td>
</tr>
<tr>
<td>The Length of the Lesson</td>
<td>7</td>
</tr>
<tr>
<td>The Nature-Study Lesson Always New</td>
<td>7</td>
</tr>
<tr>
<td>Nature-Study and Object Lessons</td>
<td>7</td>
</tr>
<tr>
<td>Nature-Study in the Schoolroom</td>
<td>8</td>
</tr>
<tr>
<td>Nature-Study and Museum Specimens</td>
<td>8</td>
</tr>
<tr>
<td>The Lens, Microscope and Field-glass as Helps</td>
<td>9</td>
</tr>
<tr>
<td>Use of Pictures, Charts and Blackboard Drawings</td>
<td>10</td>
</tr>
<tr>
<td>The Use of Scientific Names</td>
<td>10</td>
</tr>
<tr>
<td>The Story as a Supplement to the Nature-Study Lesson</td>
<td>10</td>
</tr>
<tr>
<td>The Nature-Study Attitude toward Life and Death</td>
<td>11</td>
</tr>
<tr>
<td>Should the Nature-Study Teacher Teach How to Destroy Life?</td>
<td>13</td>
</tr>
<tr>
<td>The Field Note-book</td>
<td>13</td>
</tr>
<tr>
<td>The Field Excursion</td>
<td>15</td>
</tr>
<tr>
<td>Pets as Nature-Study Subjects</td>
<td>15</td>
</tr>
<tr>
<td>The Correlation of Nature-Study with Language Work</td>
<td>16</td>
</tr>
<tr>
<td>The Correlation of Nature-Study with Drawing</td>
<td>17</td>
</tr>
<tr>
<td>The Correlation of Nature-Study with Geography</td>
<td>18</td>
</tr>
<tr>
<td>The Correlation of Nature-Study with History</td>
<td>19</td>
</tr>
<tr>
<td>The Correlation of Nature-Study with Arithmetic</td>
<td>20</td>
</tr>
<tr>
<td>Gardening and Nature-Study</td>
<td>21</td>
</tr>
<tr>
<td>Nature-Study and Agriculture</td>
<td>22</td>
</tr>
<tr>
<td>Nature-Study Clubs</td>
<td>24</td>
</tr>
<tr>
<td>How to Use this Book</td>
<td>24</td>
</tr>
</tbody>
</table>

PART II

ANIMAL LIFE

I Bird Study

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning Bird Study in the Primary Grades</td>
<td>25</td>
</tr>
<tr>
<td>Feathers as Clothing</td>
<td>27</td>
</tr>
<tr>
<td>Feathers as Ornament</td>
<td>30</td>
</tr>
<tr>
<td>How Birds Fly</td>
<td>33</td>
</tr>
<tr>
<td>Eyes and Ears of Birds</td>
<td>36</td>
</tr>
</tbody>
</table>
The Form and Use of Beaks .. 37
The Feet of Birds .. 39
Chicken Ways .. 41
Pigeons .. 45
The Canary and the Goldfinch 49
The Robin ... 54
The Bluebird .. 60
The White-breasted Nuthatch 63
The Chickadee .. 66
The Downy Woodpecker .. 69
The Sapsucker ... 73
The Redheaded Woodpecker 75
The Flicker or Yellow-hammer 77
The Meadowlark ... 80
The English Sparrow .. 84
The Chipping Sparrow .. 88
The Song Sparrow .. 91
The Mockingbird ... 94
The Catbird ... 98
The Belted Kingfisher ... 101
The Screech Owl .. 104
The Red Shouldered and Red Tailed Hawks 108
The Swallows and the Chimney Swift 112
The Hummingbird .. 120
The Red-winged Blackbird ... 122
The Baltimore Oriole ... 125
The Crow ... 129
The Cardinal Grosbeak ... 133
Geese ... 136
The Turkey ... 143
The Study of Birds' Nests in Winter 147

II Fish Study

The Goldfish ... 149
The Bullhead ... 154
The Common Sucker .. 158
The Shiner .. 161
Brook Trout .. 164
The Stickleback ... 168
The Sunfish .. 172
The Johnny Darter .. 177

III Batrachian Study

The Common Toad .. 181
The Tadpole Aquarium ... 185
The Tree-frog or Tree-toad .. 190
The Frog ... 193
The Newt, Eft or Salamander 197

IV Reptile Study

The Garter or Garden Snake 201
The Milk Snake, or Spotted Adder 204
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Water Snake</td>
<td></td>
<td>206</td>
</tr>
<tr>
<td>The Turtle</td>
<td></td>
<td>208</td>
</tr>
</tbody>
</table>

V Mammal Study

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cotton-tail Rabbit</td>
<td>213</td>
</tr>
<tr>
<td>The Muskrat</td>
<td>218</td>
</tr>
<tr>
<td>The House Mouse</td>
<td>224</td>
</tr>
<tr>
<td>The Woodchuck</td>
<td>229</td>
</tr>
<tr>
<td>The Red Squirrel or Chickaree</td>
<td>233</td>
</tr>
<tr>
<td>Furry</td>
<td>238</td>
</tr>
<tr>
<td>The Chipmunk</td>
<td>240</td>
</tr>
<tr>
<td>The Little Brown Bat</td>
<td>243</td>
</tr>
<tr>
<td>The Skunk</td>
<td>247</td>
</tr>
<tr>
<td>The Raccoon</td>
<td>250</td>
</tr>
<tr>
<td>The Wolf</td>
<td>255</td>
</tr>
<tr>
<td>The Fox</td>
<td>257</td>
</tr>
<tr>
<td>Dogs</td>
<td>261</td>
</tr>
<tr>
<td>The Cat</td>
<td>268</td>
</tr>
<tr>
<td>The Goat</td>
<td>275</td>
</tr>
<tr>
<td>The Sheep</td>
<td>281</td>
</tr>
<tr>
<td>The Horse</td>
<td>286</td>
</tr>
<tr>
<td>Cattle</td>
<td>295</td>
</tr>
<tr>
<td>The Pig</td>
<td>303</td>
</tr>
</tbody>
</table>

VI Insect Study

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Life History of Insects</td>
<td>308</td>
</tr>
<tr>
<td>The Structure of Insects</td>
<td>312</td>
</tr>
<tr>
<td>The Black Swallow-tail Butterfly</td>
<td>315</td>
</tr>
<tr>
<td>The Monarch Butterfly</td>
<td>320</td>
</tr>
<tr>
<td>The Isabella Tiger Moth or Woolly Bear</td>
<td>326</td>
</tr>
<tr>
<td>The Cecropia</td>
<td>330</td>
</tr>
<tr>
<td>The Promethea</td>
<td>336</td>
</tr>
<tr>
<td>The Hummingbird, or Sphinx, Moths</td>
<td>340</td>
</tr>
<tr>
<td>The Codling Moth</td>
<td>347</td>
</tr>
<tr>
<td>Leaf-miners</td>
<td>352</td>
</tr>
<tr>
<td>The Leaf-rollers</td>
<td>357</td>
</tr>
<tr>
<td>The Gall-dwellers</td>
<td>360</td>
</tr>
<tr>
<td>The Grasshopper</td>
<td>365</td>
</tr>
<tr>
<td>The Katydid</td>
<td>370</td>
</tr>
<tr>
<td>The Black Cricket</td>
<td>373</td>
</tr>
<tr>
<td>The Snowy Tree-cricket</td>
<td>377</td>
</tr>
<tr>
<td>The Cockroach</td>
<td>378</td>
</tr>
<tr>
<td>How to Make an Aquarium for Insects</td>
<td>380</td>
</tr>
<tr>
<td>The Dragon-flies and Damsel-flies</td>
<td>382</td>
</tr>
<tr>
<td>The Caddis-worms and the Caddis-flies</td>
<td>387</td>
</tr>
<tr>
<td>The Aphids or Plant Lice</td>
<td>392</td>
</tr>
<tr>
<td>The Ant-lion</td>
<td>395</td>
</tr>
<tr>
<td>Mother Lace-wing and the Aphis-lion</td>
<td>397</td>
</tr>
<tr>
<td>The Mosquito</td>
<td>400</td>
</tr>
<tr>
<td>The House-fly</td>
<td>405</td>
</tr>
<tr>
<td>The Colorado Potato-beetle</td>
<td>409</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>The Ladybird</td>
<td>413</td>
</tr>
<tr>
<td>The Firefly</td>
<td>416</td>
</tr>
<tr>
<td>The Ways of the Ant</td>
<td>419</td>
</tr>
<tr>
<td>How to Make a Lubbock Ant-Nest</td>
<td>423</td>
</tr>
<tr>
<td>The Ant-Nest and What May be Seen Within it</td>
<td>425</td>
</tr>
<tr>
<td>The Mud-dauber</td>
<td>429</td>
</tr>
<tr>
<td>The Yellow-jacket</td>
<td>432</td>
</tr>
<tr>
<td>The Leaf-cutter Bee</td>
<td>436</td>
</tr>
<tr>
<td>The Little Carpenter Bee</td>
<td>439</td>
</tr>
<tr>
<td>The Bumblebee</td>
<td>442</td>
</tr>
<tr>
<td>The Honey-bee</td>
<td>445</td>
</tr>
<tr>
<td>The Honey-comb</td>
<td>451</td>
</tr>
<tr>
<td>Industries of the Hive and the Observation Hive</td>
<td>453</td>
</tr>
<tr>
<td>VII Other Invertebrate-Animal Study</td>
<td></td>
</tr>
<tr>
<td>The Garden Snail</td>
<td>458</td>
</tr>
<tr>
<td>The Earthworm</td>
<td>462</td>
</tr>
<tr>
<td>The Crayfish</td>
<td>466</td>
</tr>
<tr>
<td>Daddy Longlegs, or Grandfather Greybeard</td>
<td>472</td>
</tr>
<tr>
<td>Spiders</td>
<td>475</td>
</tr>
<tr>
<td>The Funnel-web</td>
<td>477</td>
</tr>
<tr>
<td>The Orb-web</td>
<td>478</td>
</tr>
<tr>
<td>The Filmy Dome</td>
<td>483</td>
</tr>
<tr>
<td>Ballooning Spiders</td>
<td>484</td>
</tr>
<tr>
<td>The White Crab-Spider</td>
<td>485</td>
</tr>
<tr>
<td>How the Spider Mothers Take Care of their Young</td>
<td>487</td>
</tr>
<tr>
<td>PART III</td>
<td></td>
</tr>
<tr>
<td>PLANT LIFE</td>
<td></td>
</tr>
<tr>
<td>How to Begin the Study of Plants and Flowers</td>
<td>489</td>
</tr>
<tr>
<td>How to Make Plants Comfortable</td>
<td>490</td>
</tr>
<tr>
<td>How to Teach the Names of the Parts of a Flower</td>
<td>492</td>
</tr>
<tr>
<td>Teach the Use of a Flower</td>
<td>493</td>
</tr>
<tr>
<td>Flowers and Insect Partners</td>
<td>494</td>
</tr>
<tr>
<td>The Relation of Plants to Geography</td>
<td>495</td>
</tr>
<tr>
<td>Seed Germination</td>
<td>495</td>
</tr>
<tr>
<td>I Wild-flower Study</td>
<td></td>
</tr>
<tr>
<td>The Hepatica</td>
<td>496</td>
</tr>
<tr>
<td>The Yellow Adder's Tongue</td>
<td>499</td>
</tr>
<tr>
<td>Bloodroot</td>
<td>503</td>
</tr>
<tr>
<td>The Trillium</td>
<td>506</td>
</tr>
<tr>
<td>Dutchman's Breeches and Squirrel Corn</td>
<td>509</td>
</tr>
<tr>
<td>Jack-in-the-Pulpit</td>
<td>512</td>
</tr>
<tr>
<td>The Violet</td>
<td>515</td>
</tr>
<tr>
<td>The May Apple or Mandrake</td>
<td>519</td>
</tr>
<tr>
<td>The Bluets</td>
<td>523</td>
</tr>
<tr>
<td>The Yellow Lady's Slipper, or Moccasin Flower</td>
<td>525</td>
</tr>
<tr>
<td>The Common Buttercup</td>
<td>528</td>
</tr>
<tr>
<td>The Evening Primrose</td>
<td>530</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Hedge Bindweed</td>
<td>535</td>
</tr>
<tr>
<td>The Dodder</td>
<td>538</td>
</tr>
<tr>
<td>The Milkweed</td>
<td>540</td>
</tr>
<tr>
<td>The White Water Lily</td>
<td>545</td>
</tr>
<tr>
<td>Pondweed</td>
<td>548</td>
</tr>
<tr>
<td>The Cat-tail</td>
<td>551</td>
</tr>
<tr>
<td>A Type Lesson for a Composite Flower</td>
<td>554</td>
</tr>
<tr>
<td>The Goldenrod</td>
<td>555</td>
</tr>
<tr>
<td>The Asters</td>
<td>558</td>
</tr>
<tr>
<td>The White Daisy</td>
<td>560</td>
</tr>
<tr>
<td>The Yellow Daisy or Black-eyed Susan</td>
<td>562</td>
</tr>
<tr>
<td>The Thistle</td>
<td>563</td>
</tr>
<tr>
<td>The Burdock</td>
<td>566</td>
</tr>
<tr>
<td>Prickly Lettuce, A Compass Plant</td>
<td>570</td>
</tr>
<tr>
<td>The Dandelion</td>
<td>572</td>
</tr>
<tr>
<td>The Pearly Everlasting</td>
<td>576</td>
</tr>
<tr>
<td>The Jewelweed, or Touch-me-not</td>
<td>578</td>
</tr>
<tr>
<td>Mullein</td>
<td>582</td>
</tr>
<tr>
<td>The Teasel</td>
<td>586</td>
</tr>
<tr>
<td>Queen Anne's Lace, or Wild Carrot</td>
<td>589</td>
</tr>
<tr>
<td>Weeds</td>
<td>594</td>
</tr>
<tr>
<td>Outline for the Study of a Weed</td>
<td>595</td>
</tr>
<tr>
<td>II Cultivated-Plant Study</td>
<td></td>
</tr>
<tr>
<td>The Crocus</td>
<td>596</td>
</tr>
<tr>
<td>Daffodils and their Relatives</td>
<td>599</td>
</tr>
<tr>
<td>The Tulip</td>
<td>603</td>
</tr>
<tr>
<td>The Pansy</td>
<td>607</td>
</tr>
<tr>
<td>The Bleeding Heart</td>
<td>611</td>
</tr>
<tr>
<td>Poppies</td>
<td>613</td>
</tr>
<tr>
<td>The California Poppy</td>
<td>616</td>
</tr>
<tr>
<td>The Nasturtium</td>
<td>620</td>
</tr>
<tr>
<td>The Bee-Larkspur</td>
<td>623</td>
</tr>
<tr>
<td>The Blue Flag, or Iris</td>
<td>626</td>
</tr>
<tr>
<td>The Sunflower</td>
<td>631</td>
</tr>
<tr>
<td>The Bachelor's Button</td>
<td>636</td>
</tr>
<tr>
<td>The Salvia or Scarlet Sage</td>
<td>637</td>
</tr>
<tr>
<td>Petunias</td>
<td>640</td>
</tr>
<tr>
<td>The Horseshoe Geranium</td>
<td>643</td>
</tr>
<tr>
<td>The Sweet Pea</td>
<td>649</td>
</tr>
<tr>
<td>The Clovers</td>
<td>652</td>
</tr>
<tr>
<td>Sweet Clover</td>
<td>655</td>
</tr>
<tr>
<td>The White Clover</td>
<td>658</td>
</tr>
<tr>
<td>Maize, or Indian Corn</td>
<td>660</td>
</tr>
<tr>
<td>The Cotton Plant</td>
<td>666</td>
</tr>
<tr>
<td>The Strawberry</td>
<td>672</td>
</tr>
<tr>
<td>The Pumpkin</td>
<td>675</td>
</tr>
<tr>
<td>III Flowerless-Plant Study</td>
<td></td>
</tr>
<tr>
<td>The Christmas Fern</td>
<td>684</td>
</tr>
<tr>
<td>The Bracken</td>
<td>689</td>
</tr>
<tr>
<td>How a Fern Bud Unfolds</td>
<td>691</td>
</tr>
</tbody>
</table>
Handbook of Nature-Study

XVI

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Fruiting of the Fern</td>
<td>693</td>
</tr>
<tr>
<td>The Field Horsetail</td>
<td>699</td>
</tr>
<tr>
<td>The Hair-cap Moss, or Pigeon Wheat</td>
<td>702</td>
</tr>
<tr>
<td>Mushrooms and other Fungi</td>
<td>706</td>
</tr>
<tr>
<td>Puffballs</td>
<td>712</td>
</tr>
<tr>
<td>The Bracket Fungi</td>
<td>714</td>
</tr>
<tr>
<td>Hedgehog Fungi</td>
<td>717</td>
</tr>
<tr>
<td>The Scarlet Saucer</td>
<td>718</td>
</tr>
<tr>
<td>The Morels</td>
<td>719</td>
</tr>
<tr>
<td>The Stinkhorns</td>
<td>720</td>
</tr>
<tr>
<td>Molds</td>
<td>720</td>
</tr>
<tr>
<td>Bacteria</td>
<td>723</td>
</tr>
</tbody>
</table>

IV Tree Study

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>How a Tree Grows</td>
<td>726</td>
</tr>
<tr>
<td>How to Begin Tree Study</td>
<td>731</td>
</tr>
<tr>
<td>How to Make Leaf Prints</td>
<td>734</td>
</tr>
<tr>
<td>The Maples</td>
<td>736</td>
</tr>
<tr>
<td>The American Elm</td>
<td>745</td>
</tr>
<tr>
<td>The Oak</td>
<td>748</td>
</tr>
<tr>
<td>The Shagbark Hickory</td>
<td>755</td>
</tr>
<tr>
<td>The Chestnut</td>
<td>757</td>
</tr>
<tr>
<td>The Horse-Chestnut</td>
<td>761</td>
</tr>
<tr>
<td>The Willows</td>
<td>765</td>
</tr>
<tr>
<td>The Cottonwood or Carolina Poplar</td>
<td>770</td>
</tr>
<tr>
<td>The White Ash</td>
<td>774</td>
</tr>
<tr>
<td>The Apple Tree</td>
<td>778</td>
</tr>
<tr>
<td>How an Apple Grows</td>
<td>782</td>
</tr>
<tr>
<td>The Apple</td>
<td>785</td>
</tr>
<tr>
<td>The Pine</td>
<td>789</td>
</tr>
<tr>
<td>The Norway Spruce</td>
<td>796</td>
</tr>
<tr>
<td>The Hemlock</td>
<td>801</td>
</tr>
<tr>
<td>The Flowering Dogwood</td>
<td>803</td>
</tr>
<tr>
<td>The Staghorn Sumac</td>
<td>806</td>
</tr>
<tr>
<td>The Witch-Hazel</td>
<td>810</td>
</tr>
<tr>
<td>The Mountain Laurel</td>
<td>813</td>
</tr>
</tbody>
</table>

PART IV

Earth and Sky

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Brook</td>
<td>818</td>
</tr>
<tr>
<td>How a Brook Drops its Load</td>
<td>822</td>
</tr>
<tr>
<td>Crystal Growth</td>
<td>825</td>
</tr>
<tr>
<td>Salt</td>
<td>827</td>
</tr>
<tr>
<td>How to Study Minerals</td>
<td>828</td>
</tr>
<tr>
<td>Quartz</td>
<td>829</td>
</tr>
<tr>
<td>Feldspar</td>
<td>831</td>
</tr>
<tr>
<td>Mica</td>
<td>832</td>
</tr>
<tr>
<td>Granite</td>
<td>833</td>
</tr>
<tr>
<td>Calcite, marble and Limestone</td>
<td>835</td>
</tr>
<tr>
<td>The Magnet</td>
<td>838</td>
</tr>
<tr>
<td>The Soil</td>
<td>842</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Water Forms</td>
<td>850</td>
</tr>
<tr>
<td>The Weather</td>
<td>857</td>
</tr>
<tr>
<td>Experiments to Show Air Pressure</td>
<td>877</td>
</tr>
<tr>
<td>The Barometer</td>
<td>878</td>
</tr>
<tr>
<td>How to read Weather Maps</td>
<td>879</td>
</tr>
<tr>
<td>The Story of the Stars</td>
<td>887</td>
</tr>
<tr>
<td>How to Begin Star Study</td>
<td>889</td>
</tr>
<tr>
<td>Cassiopeia's Chair, Cepheus and the Dragon</td>
<td>893</td>
</tr>
<tr>
<td>The Winter Stars</td>
<td>895</td>
</tr>
<tr>
<td>Orion</td>
<td>895</td>
</tr>
<tr>
<td>Aldebaran and the Pleiades</td>
<td>897</td>
</tr>
<tr>
<td>The Two Dog-Stars, Sirius and Procyon</td>
<td>898</td>
</tr>
<tr>
<td>Capella and the Heavenly Twins</td>
<td>900</td>
</tr>
<tr>
<td>The Stars of Summer</td>
<td>901</td>
</tr>
<tr>
<td>The Sun</td>
<td>905</td>
</tr>
<tr>
<td>The Relation between the Tropic of Cancer and the Planting of the Garden</td>
<td>909</td>
</tr>
<tr>
<td>The Zodiac and its Signs</td>
<td>911</td>
</tr>
<tr>
<td>The Relations of the Sun to the Earth</td>
<td>913</td>
</tr>
<tr>
<td>How to Make a Sun-dial</td>
<td>915</td>
</tr>
<tr>
<td>The Moon</td>
<td>918</td>
</tr>
</tbody>
</table>
In Nature's infinite book of secrecy
A little can I read.
—Shakespeare.
PART I.

THE TEACHING OF NATURE-STUDY

WHAT NATURE-STUDY IS

NATURE-STUDY is, despite all discussions and perver-
sions, a study of nature; it consists of simple, truthful
observations that may, like beads on a string, finally be
threaded upon the understanding and thus held together
as a logical and harmonious whole. Therefore, the object
of the nature-study teacher should be to cultivate in the
children powers of accurate observation and to build up within them,
understanding.

WHAT NATURE-STUDY SHOULD DO FOR THE CHILD

FIRST, but not most important, nature-study gives the
child practical and helpful knowledge. It makes him
familiar with nature's ways and forces, so that he is not
so helpless in the presence of natural misfortune and
disasters.

Nature-study cultivates the child's imagination since there are so
many wonderful and true stories that he may read with his own eyes,
which affect his imagination as much as does fairy lore; at the same time
nature-study cultivates in him a perception and a regard for what is true,
and the power to express it. All things seem possible in nature; yet this
seeming is always guarded by the eager quest of what is true. Perhaps,
half the falsehood in the world is due to lack of power to detect the truth
and to express it. Nature-study aids both in discernment and expression
of things as they are.

Nature-study cultivates in the child a love of the beautiful; it brings
to him early a perception of color, form and music. He sees whatever
there is in his environment, whether it be the thunder-head piled up in the
western sky, or the golden flash of the oriole in the elm; whether it be the
purple of the shadows on the snow, or the azure glint on the wing of the
little butterfly. Also, what there is of sound, he hears; he reads the
music score of the bird orchestra, separating each part and knowing
which bird sings it. And the patter of the rain, the gurgle of the brook,
the sighing of the wind in the pine, he notes and loves and becomes en-
riched thereby.

But, more than all, nature-study gives the child a sense of companion-
ship with life out of doors and an abiding love of nature. Let this latter
be the teacher's criterion for judging his or her work. If nature-study as
taught does not make the child love nature and the out-of-doors, then it
should cease. Let us not inflict permanent injury on the child by turning
him away from nature instead of toward it. However, if the love of
nature is in the teacher's heart, there is no danger; such a teacher, no
matter by what method, takes the child gently by the hand and walks with him in paths that lead to the seeing and comprehending of what he may find beneath his feet or above his head. And these paths whether they lead among the lowliest plants, or whether to the stars, finally converge and bring the wanderer to that serene peace and hopeful faith that is the sure inheritance of all those who realize fully that they are working units of this wonderful universe.

NATURE-STUDY AS A HELP TO HEALTH

Perhaps the most valuable practical lesson the child gets from nature-study is a personal knowledge that nature's laws are not to be evaded. Wherever he looks, he discovers that attempts at such evasion result in suffering and death. A knowledge thus naturally attained of the immutability of nature's "must" and "shall not" is in itself a moral education. That the fool as well as the transgressor fares ill in breaking natural laws, makes for wisdom in morals as well as in hygiene.

Out-of-door life takes the child afield and keeps him in the open air, which not only helps him physically and occupies his mind with sane subjects, but keeps him out of mischief. It is not only during childhood that this is true, for love of nature counts much for sanity in later life. This is an age of nerve tension, and the relaxation which comes from the comforting companionship found in woods and fields is, without doubt, the best remedy for this condition. Too many men who seek the out-of-doors for rest at the present time, can only find it with a gun in hand. To rest and heal their nerves they must go out and try to kill some unfortunate creature,—the old, old story of sacrificial blood. Far better will it be when, through properly training the child, the man shall be enabled to enjoy nature through seeing how creatures live rather than watching them die. It is the sacred privilege of nature-study to do this for future generations and for him thus trained, shall the words of Longfellow's poem to Agassiz apply:

"And he wandered away and away, with Nature the dear old nurse,
Who sang to him night and day, the rhymes of the universe.
And when the way seemed long, and his heart began to fail,
She sang a more wonderful song, or told a more wonderful tale."

WHAT NATURE-STUDY SHOULD DO FOR THE TEACHER

During many years, I have been watching teachers in our public schools in their conscientious and ceaseless work; and so far as I can foretell, the fate that awaits them finally is either nerve exhaustion or nerve atrophy. The teacher must become either a neurasthenic or a "clam."

I have had conversations with hundreds of teachers in the public schools of New York State concerning the introduction of nature-study into the curriculum, and most of them declared, "Oh, we have not time for it. Every moment is full now!" Their nerves were at such a tension that with one more thing to do they must fall apart. The question in my own mind during these conversations was always, how long can she
stand it! I asked some of them "Did you ever try a vigorous walk in the open air in the open country every Saturday or every Sunday of your teaching year?" "Oh no!" they exclaimed in despair of making me understand. "On Sunday we must go to church or see our friends and on Saturday we must do our shopping or our sewing. We must go to the dressmaker's lest we go unclad, we must mend, and darn stockings; we need Saturday to catch up."

Yes, catch up with more cares, more worries, more fatigue, but not with more growth, more strength, more vigor and more courage for work. In my belief, there are two and only two occupations for Saturday afternoon or forenoon for a teacher. One is to be out of doors and the other is to lie in bed, and the first is best. Out in this, God's beautiful world, there is everything waiting to heal lacerated nerves, to strengthen tired muscles, to please and content the soul that is torn to shreds with duty and care. To the teacher who turns to nature's healing, nature-study in the schoolroom is not a trouble; it is a sweet, fresh breath of air blown across the heat of radiators and the noisome odor of over-crowded small humanity. She, who opens her eyes and her heart nature-ward even once a week, finds nature-study in the schoolroom a delight and an abiding joy. What does such a one find in her schoolroom instead of the terrors of discipline, the eternal watching and eternal nagging to keep the pupils quiet and at work? She finds, first of all, companionship with her children; and second, she finds that without planning or going on a far voyage, she has found health and strength.

WHEN AND WHY THE TEACHER SHOULD SAY "I DO NOT KNOW"

No SCIENCE professor in any university, if he be a man of high attainment, hesitates to say to his pupils "I do not know," if they ask for information beyond his knowledge. The greater his scientific reputation and erudition, the more readily, simply and without apology he says this. He, better than others, comprehends how vast is the region that lies beyond man's present knowledge. It is only the teacher in the elementary schools who has never received enough scientific training to reveal to her how little she does know, who feels that she must appear to know everything or her pupils will lose confidence in her. But how useless is this pretence, in nature-study! The pupils, whose younger eyes are much keener for details than hers, will soon discover her limitations and then their distrust of her will be real.

In nature-study any teacher can with honor say, "I do not know;" for perhaps, the question asked is as yet unanswered by the great scientists. But she should not let her lack of knowledge be a wet blanket thrown over her pupils' interest. She should say frankly, "I do not know; let us see if we cannot together find out this mysterious thing. Maybe no one knows it as yet, and I wonder if you will discover it before I do." She thus conveys the right impression, that only a little about the intricate life of plants and animals is yet known; and at the same time she makes her pupils feel the thrill and zest of investigation. Nor will she lose their respect by doing this, if she does it in the right spirit. For three years, I had for comrades in my walks afield, two little children and they kept me
busy saying, "I do not know". But they never lost confidence in me or in my knowledge; they simply gained respect for the vastness of the unknown.

The chief charm of nature-study would be taken away if it did not lead us through the border-land of knowledge into the realm of the undiscovered. Moreover, the teacher, in confessing her ignorance and at the same time her interest in a subject, establishes between herself and her pupils a sense of companionship which relieves the strain of discipline, and gives her a new and intimate relation with her pupils which will surely prove a potent element in her success. The best teacher is always one who is the good comrade of her pupils.

NATURE-STUDY, THE ELIXIR OF YOUTH

The old teacher is too likely to become didactic, dogmatic and "bossy" if she does not constantly strive with herself. Why? She has to be thus five days in the week and, therefore, she is likely to be so seven. She knows arithmetic, grammar and geography to their uttermost and she is never allowed to forget that she knows them, and finally her interests become limited to what she knows.

After all, what is the chief sign of growing old? Is it not the feeling that we know all there is to be known? It is not years which make people old; it is ruts, and a limitation of interests. When we no longer care about anything except our own interests, we are then old, it matters not whether our years be twenty or eighty. It is rejuvenation for the teacher, thus growing old, to stand ignorant as a child in the presence of one of the simplest of nature's miracles—the formation of a crystal, the evolution of the butterfly from the caterpillar, the exquisite adjustment of the silken lines in the spider's orb-web. I know how to "make magic" for the teacher who is growing old. Let her go out with her youngest pupil and fall on her knees before the miracle of the blossoming violet and say: "Dear Nature, I know naught of the wondrous life of these, your smallest creatures. Teach me!" and she will suddenly find herself young.

NATURE-STUDY AS A HELP IN SCHOOL DISCIPLINE

Much of the naughtiness in school is a result of the child's lack of interest in his work, augmented by the physical inaction that results from an attempt to sit quietly. The best teachers try to obviate both of these rather than to punish because of them. Nature-study is an aid in both respects, since it keeps the child interested and also gives him something to do.

In the nearest approach to an ideal school that I have ever seen, for children of second grade, the pupils were allowed, as a reward of merit, to visit the aquaria or the terrarium for periods of five minutes, which time was given to the blissful observation of the fascinating prisoners. The teacher also allowed the reading of stories about the plants and animals under observation to be regarded as a reward of merit. As I entered the schoolroom, there were eight or ten of the children at the windows watching eagerly what was happening to the creatures confined there in the various cages. There was a mud aquarium for the frogs and salamanders,
an aquarium for fish, many small aquaria for insects and each had one or
two absorbingly interested spectators who were quiet, well behaved and
were getting their nature-study lessons in an ideal manner. The teacher
told me that the problem of discipline was solved by this method, and
that she was rarely obliged to rebuke or punish. In many other schools,
watching the living creatures in the aquaria, or terrarium has been used
as a reward for other work well done.

THE RELATION OF NATURE-STUDY TO SCIENCE

NATURE-STUDY is not elementary science as so taught,
because its point of attack is not the same; error in this
respect has caused many a teacher to abandon nature-
study and many a pupil to hate it. In elementary science
the work begins with the simplest animals and plants
and progresses logically through to the highest forms; at
least this is the method pursued in most universities and
schools. The object of the study is to give the pupils an outlook over
all the forms of life and their relation one to another. In nature-study
the work begins with any plant or creature which chances to interest the
pupil. It begins with the robin when it comes back to us in March,
promising spring; or it begins with the maple leaf which flutters to the
ground in all the beauty of its autumnal tints. A course in biological
science leads to the comprehension of all kinds of life upon our globe.
Nature-study is for the comprehension of the individual life of the
bird, insect or plant that is nearest at hand.

Nature-study is perfectly good science within its limits, but it is not
meant to be more profound or comprehensive than the capabilities of the
child's mind. More than all, nature-study is not science belittled as if
it were to be looked at through the reversed opera glass in order to bring
it down small enough for the child to play with. Nature-study, as far as
it goes, is just as large as is science for "grown-ups" and may deal with the
same subject matter and should be characterized by the same accuracy.
It simply does not go so far.

To illustrate: If we are teaching the science of ornithology, we take
first the Archaeopteryx, then the swimming and the scratching birds and
finally reach the song birds, studying each as a part of the whole. Nature-
study begins with the robin because the child sees it and is interested in it
and he notes the things about the habits and appearance of the robin that
may be perceived by intimate observation. In fact, he discovers for him-
self all that the most advanced book of ornithology would give concerning
the ordinary habits of this one bird; the next bird studied may be the
turkey in the barnyard, or the duck on the pond, or the screech-owl in the
spruces, if any of these happen to impinge upon his notice and interest.
However, such nature-study makes for the best of scientific ornithology,
because by studying the individual birds thus thoroughly, the pupil
finally studies a sufficient number of forms so that his knowledge, thus
assembled, gives him a better comprehension of birds as a whole than
could be obtained by the routine study of the same. Nature-study does
not start out with the classification given in books, but in the end it builds
up a classification in the child's mind which is based on fundamental
knowledge; it is a classification like that evolved by the first naturalists,
it is built on careful personal observations of both form and life.
NATURE-STUDY NOT FOR DRILL

If nature-study is made a drill, its pedagogic value is lost. When it is properly taught, the child is unconscious of mental effort or that he is suffering the act of teaching. As soon as nature-study becomes a task, it should be dropped; but how could it ever be a task to see that the sky is blue, or the dandelion golden, or to listen to the oriole in the elm!

THE CHILD NOT INTERESTED IN NATURE-STUDY

What to do with the pupil not interested in nature-study subjects is a problem that confronts many earnest teachers. Usually the reason for this lack of interest, is the limited range of subjects used for nature-study lessons. Often the teacher insists upon flowers as the lesson subject, when toads or snakes would prove the key to the door of the child’s interest. But whatever the cause may be, there is only one right way out of this difficulty: The child not interested should be kept at his regular school work and not admitted as a member of the nature-study class, where his influence is always demoralizing. He had much better be learning his spelling lesson than learning to hate nature through being obliged to study subjects in which he is not interested. In general, it is safe to assume that the pupil’s lack of interest in nature-study is owing to a fault in the teacher’s method. She may be trying to fill the child’s mind with facts when she should be leading him to observe these for himself, which is a most entertaining occupation for the child. It should always be borne in mind that mere curiosity is always impertinent, and that it is never more so than when exercised in the realm of nature. A genuine interest should be the basis of the study of the lives of plants and lower animals. Curiosity may elicit facts, but only real interest may mold these facts into wisdom.

WHEN TO GIVE THE LESSON

There are two theories concerning the time when a nature-study lesson should be given. Some teachers believe that it should be a part of the regular routine; others have found it of greatest value if reserved for that period of the school day when the pupils are weary and restless, and the teacher’s nerves strained to the snapping point. The lesson on a tree, insect or flower at such a moment affords immediate relief to everyone; it is a mental excursion, from which all return refreshed and ready to finish the duties of the day.

While I am convinced that the use of the nature-study lesson for mental refreshment makes it of greatest value, yet I realize fully that if it is relegated to such periods, it may not be given at all. It might be better to give it a regular period late in the day, for there is strength and sureness in regularity. The teacher is much more likely to prepare herself for the lesson, if she knows that it is required at a certain time.
THE LENGTH OF THE LESSON

HE nature-study lesson should be short and sharp and may vary from ten minutes to a half hour in length. There should be no dawdling; if it is an observation lesson, only a few points should be noted and the meaning for the observations made clear. If an outline be suggested for field observation, it should be given in an inspiring manner which shall make each pupil anxious to see and read the truth for himself. The nature story when properly read is never finished; it is always at an interesting point, "continued in our next."

The teacher may judge as to her own progress in nature-study by the length of time she is glad to spend in reading from nature's book what is therein written. As she progresses, she finds those hours spent in studying nature speed faster, until a day thus spent seems but an hour. The author can think of nothing she would so gladly do as to spend days and months with the birds, bees and flowers with no obligation for telling what she should see. There is more than mere information in hours thus spent. Lowell describes them well when he says:

"Those old says when the balancing of a yellow butterfly 'er a thistle bloom Was spiritual food and lodging for the whole afternoon."

THE NATURE-STUDY LESSON ALWAYS NEW

A nature-study lesson should not be repeated unless the pupils demand it. It should be done so well the first time that there is no need of repetition, because it has thus become a part of the child's consciousness. The repetition of the same lesson in different grades was, to begin with, a hopeless incubus upon nature-study. One disgusted boy declared, "Darn germination! I had it in the primary and last year and now I am having it again. I know all about germination." The boy's attitude was a just one; but if there had been revealed to him the meaning of germination, instead of the mere process, he would have realized that until he had planted and observed every plant in the world he would not know all about germination, because each seedling has its own interesting story. The only excuse for repeating a nature-study lesson is in recalling it for comparison and contrast with other lessons. The study of the violet will naturally bring about a review of the pansy; the dandelion, of the sunflower; the horse, of the donkey; the butterfly, of the moth.

NATURE-STUDY AND OBJECT LESSONS

THE object lesson method was introduced to drill the child to see a thing accurately, not only as a whole, but in detail and to describe accurately what he saw. A book or a vase or some other object was held up before the class for a moment and then removed; afterwards the pupils described it as perfectly as possible. This is an excellent exercise and the children usually enjoy it as if it were a game. But if the teacher has in mind the same thought when she is giving the nature-study lesson, she has little comprehension of the meaning of the latter and the pupils will have less. In nature-study, it is not desirable that the child see all the details, but rather those details that have something to do with the life of the creature studied; if he sees that the
grasshopper has the hind legs much longer than the others, he will inevi-
tably note that there are two other pairs of legs and he will in the
meantime have come into an illuminating comprehension of the reason
the insect is called "grasshopper." The child should see definitely and
accurately all that is necessary for the recognition of a plant or animal;
but in nature-study, the observation of form is for the purpose of better
understanding life. In fact, it is form linked with life, the relation of
"being" to "doing."

NATURE-STUDY IN THE SCHOOLROOM

ANY subjects for nature-study lessons may be brought
into the schoolroom. Whenever it is possible, the pupils
should themselves bring the material, as the collecting
of it is an important part of the lesson. There should
be in the schoolroom conveniences for caring for the
little prisoners brought in from the field. The terrarium
and breeding cages, of different kinds should be pro-
vided for the insects, toads and little mammals. Here they may live
in comfort, when given their natural food, while the children observe
their interesting ways. The ants' nest, and the observation hive 'yield
fascinating views of the marvelous lives of the insect socialists, while the
cheerful prisoner in the bird cage may be made a constant illustration of
the adaptations and habits of all birds. The aquaria for fishes, tadpoles
and insects afford the opportunity for continuous study of these water
creatures and are a never-failing source of interest to the pupils, while
the window garden may be made not only an ornament and an æsthetic
delight, but a basis for interesting study of plant growth and development.

A schoolroom thus equipped is a place of delight as well as enlighten-
ment to the children. Once, a boy whose luxurious home was filled with
all that money could buy and educated tastes select, said of a little nature-
study laboratory which was in the unfinished attic of a school building, but
which was teeming with life: "I think this is the most beautiful room in
the world."

NATURE-STUDY AND MUSEUM SPECIMENS

THE matter of museum specimens is another question for
the nature-study teacher to solve, and has a direct
bearing on an attitude toward taking life. There are
many who believe the stuffed bird or the case of pinned
insects have no place in nature-study; and certainly
these should not be the chief material. But let us use
our common sense; the boy sees a bird in the woods or
field and does not know its name; he seeks the bird in the museum and
thus is able to place it and read about it and is stimulated to make other
observations concerning it. Wherever the museum is a help to the study
of life in the field, it is well and good. Some teachers may give a live les-
son from a stuffed specimen, and other teachers may stuff their pupils
with facts about a live specimen; of the two, the former is preferable.

There is no question that making a collection of insects is an
efficient way of developing the child's powers of close observation, as well
as of giving him manual dexterity in handling fragile things. Also it is
a false sentiment which attributes to an insect the same agony at being
impaled on a pin that we might suffer at being thrust through by a stake. The insect nervous system is far more conveniently arranged for such an ordeal than ours; and, too, the cyanide bottle brings immediate and painless death to the insects placed within it; moreover, the insects usually collected have short lives anyway. So far as the child is concerned, he is thinking of his collection of moths or butterflies and not at all of taking life; so it is not teaching him to wantonly destroy living creatures. However, an indiscriminate encouragement of the making of insect collections cannot be advised. There are some children who will profit by it and some who will not, and unquestionably the best kind of study of insects is watching their interesting ways while they live.

To kill a creature in order to prepare it for a nature-study lesson is not only wrong but absurd, for nature-study has to do with life rather than death, and the form of any creature is interesting only when its adaptations for life are studied. But again, a nature-study teacher may be an opportunist; if without any volition on her part or the pupils', a freshly killed specimen comes to hand, she should make the most of it. The writer remembers most illuminating lessons from a partridge that broke a window and its neck simultaneously during its flight one winter night, a yellow hammer that killed itself against an electric wire, and a muskrat that turned its toes to the skies for no understandable reason. In each of these cases the creature's special physical adaptations for living its own peculiar life were studied, and the effect was not the study of a dead thing, but of a successful and wonderful life.

THE LENS, MICROSCOPE AND FIELD GLASS AS HELPS IN NATURE-STUDY

In elementary grades, nature-study deals with objects which the children can see with the naked eye. However, a lens is a help in almost all of this work because it is such a joy to the child to gaze at the wonders it reveals. There is no lesson given in this book which requires more than a simple lens for seeing the most minute parts discussed. An excellent lens may be bought for a dollar, and a fairly good one for fifty cents or even twenty-five cents. The lens should be chained to a table or desk where it may be used by the pupils at recess. This gives each an opportunity for using it and obviates the danger of losing it. If the pupils themselves own lenses, they should be fastened by a string or chain to the pocket.

A microscope has no legitimate part in nature-study. But if there is one available, it reveals so many wonders in the commonest objects, that it can be made a source of added interest oftentimes. For instance, to thus see the scales on the butterfly's wing affords the child pleasure as well as edification. Field or opera glasses, while indispensible for bird study, are by no means necessary in nature-study. However, the pupils will show greater interest in noting the birds' colors if they are allowed to make the observations with the help of a glass.
USES OF PICTURES, CHARTS AND BLACKBOARD DRAWINGS

Pictures alone should never be used as the subjects for nature-study lessons, but they may be of great use in illustrating and illuminating a lesson. Books well illustrated are more readily comprehended by the child and are often very helpful to him, especially after his interest in the subject is thoroughly aroused. If charts are used to illustrate the lesson, the child is likely to be misled by the size of the drawing, which is also the case in blackboard pictures. However, this error may be avoided by fixing the attention of the pupil on the object first. If the pupils are studying the ladybird and have it in their hands, the teacher may use a diagram representing the beetle as a foot long and it will still convey the idea accurately; but if she begins with the picture, she probably can never convince the children that the picture has anything to do with the insect.

In making blackboard drawings illustrative of the lesson, it is best, if possible, to have one of the pupils do the drawing in the presence of the class; or, if the teacher does the drawing, she should hold the object in her hand while doing it and look at it often so that the children may see that she is trying to represent it accurately. Taking everything into consideration, however, nature-study charts and blackboard drawings are of little use to the nature-study teacher.

THE USES OF SCIENTIFIC NAMES

Disquieting problems relative to scientific nomenclature always confront the teacher of nature-study. My own practice has been to use the popular names of species, except in cases where confusion might ensue, and to use the scientific names for anatomical parts. However, this matter is of little importance if the teacher bears in mind that the purpose of nature-study is to know the subject under observation and to learn the name incidentally.

If the teacher says: "I have a pink hepatica. Can anyone find me a blue one?" the children, who naturally like grown-up words, will soon be calling these flowers hepaticas. But if the teacher says, "These flowers are called hepaticas. Now please everyone remember the name. Write it in your books as I write it on the blackboard, and in half an hour I shall ask you again what it is," the pupils naturally look upon the exercise as a word lesson and its real significance is lost. This sort of nature-study is dust and ashes and there has been too much of it. The child should never be required to learn the name of anything in the nature-study work; but the name should be used so often and so naturally in his presence, that he will learn it without being conscious of the process.

THE STORY AS A SUPPLEMENT TO THE NATURE-STUDY LESSON

Any of the subjects for nature lessons can be studied only in part, since but one phase may be available at the time. Often, especially if there is little probability that the pupils will find opportunity to complete the study, it is best to round out their knowledge by reading or telling the story to supplement the facts which they have discov-
ered for themselves. This story should not be told as a finality or as a complete picture but as a guide and inspiration for further study. Always leave at the end of the story an interrogation mark that will remain aggressive and insistent in the child’s mind. To illustrate: Once a club of junior naturalists brought me rose leaves injured by the leaf-cutter bee and asked me why the leaves were cut out so regularly. I told them the story of the use made by the mother bee of these oval and circular bits of leaves and made the account as vital as I was able; but at the end I said, ‘I do not know which species of bee cut these leaves. She is living here among us and building her nest with your rose leaves which she is cutting every day almost under your very eyes. Is she then so much more clever than you that you cannot see her nor find her nest?’ For two years following this lesson I received letters from members of this club. Two carpenter bees and their nests were discovered by them and studied before the mysterious leaf-cutter was finally ferreted out. My story had left something interesting for the young naturalists to discover. The children should be impressed with the fact that the nature story is never finished. There is not a weed nor an insect nor a tree so common that the child, by observing carefully, may not see things never yet recorded in scientific books; therefore the supplementary story should be made an inspiration for keener interest and further investigation on the part of the pupil. The supplementary story simply thrusts aside some of the obscuring underbrush thus revealing more plainly the path to further knowledge.

THE NATURE-STUDY ATTITUDE TOWARD LIFE AND DEATH

Perhaps no greater danger besets the pathway of the nature-study teacher than the question involved in her pupils’ attitude toward life and death. To inculcate in the child a reverence for life and yet to keep him from becoming mawkish and morbid is truly a problem. It is almost inevitable that the child should become sympathetic with the life of the animal or plant studied, since a true understanding of the life of any creature creates an interest which stimulates a desire to protect this particular creature and make its life less hard. Many times, within my own experience, have I known boys, who began by robbing birds’ nests for egg collections, to end by becoming most zealous protectors of the birds. The humane qualities within these boys budded and blossomed in the growing knowledge of the lives of the birds. At Cornell University, it is a well known fact that those students who turn aside so as not to crush the ant, caterpillar or cricket on the pavement are almost invariably those that are studying entomology; and in America it is the botanists themselves who are leading the crusade for flower protection.

Thus, the nature-study teacher, if she does her work well, is a sure aid in inculcating a respect for the rights of all living beings to their own lives; and she needs only to lend her influence gently in this direction to change carelessness to thoughtfulness and cruelty to kindness. But with this impetus toward a reverence for life, the teacher soon finds herself in a dilemma from which there is no logical way out, so long as she lives in a world where lamb chop, beefsteak and roast chicken are articles of ordi-
nary diet; a world in fact, where every meal is based upon the death of some creature. For if she places much emphasis upon the sacredness of life, the children soon begin to question whether it be right to slay the lamb or the chicken for their own food. It would seem that there is nothing for the consistent nature-study teacher to do but become a vegetarian, and even then there might arise refinements in this question of taking life, she might have to consider the cruelty to asparagus in cutting it off in plump infancy, or the ethics of devouring in the turnip the food laid up by the mother plant to perfect her seed. In fact, a most rigorous diet would be forced upon the teacher who should refuse to sustain her own existence at the cost of life; and if she should attempt to teach the righteousness of such a diet she would undoubtedly forfeit her position; and yet what is she to do! She will soon find herself in the position of a certain lady who placed sheets of sticky fly-paper around her kitchen to rid her house of flies, and then in mental anguish picked off the buzzing, struggling victims and sought to clean their too adhesive wings and legs.

In fact, drawing the line between what to kill and what to let live, requires the use of common sense rather than logic. First of all, the nature-study teacher, while exemplifying and encouraging the humane attitude toward the lower creatures, and repressing cruelty which wantonly causes suffering, should never magnify the terrors of death. Death is as natural as life and the inevitable end of physical life on our globe. Therefore, every story and every sentiment expressed which makes the child feel that death is terrible, is wholly wrong. The one right way to teach about death is not to emphasize it one way or another, but to deal with it as a circumstance common to all; it should be no more emphasized than the fact that creatures eat or fall asleep.

Another thing for the nature-study teacher to do is to direct the interest of the child so that it shall center upon the hungry creature rather than upon the one which is made into the meal. It is well to emphasize the fact that one of the conditions imposed upon every living being in the woods and fields, is that it is entitled to a meal when it is hungry, if it is clever enough to get it. The child naturally takes this view of it. I remember well as a child I never thought particularly about the mouse which my cat was eating; in fact, the process of transmuting mouse into cat seemed altogether proper, but when the cat played with the mouse, that was quite another thing, and was never permitted. Although no one appreciates more deeply than I the debt which we owe to Thompson-Seton and writers of his kind, who have placed before the public the animal story from the animal point of view and thus set us all to thinking, yet it is certainly wrong to impress this view too strongly upon the young and sensitive child. In fact, this process should not begin until the judgment and the understanding is well developed, for we all know that although seeing the other fellow’s standpoint is a source of strength and breadth of mind, yet living the other fellow’s life is, at best, an enfeebling process and a futile waste of energy.
SHOULD THE NATURE-STUDY TEACHER TEACH HOW TO DESTROY LIFE?

It is probably within the proper scope of the nature-study teacher to place emphasis upon the domain of man, who being the most powerful of all animals, asserts his will as to which ones shall live in his midst. From a standpoint of abstract justice, the stray cat has just as much right to kill and eat the robin which builds in the vine of my porch as the robin has to pull and eat the earthworms from my lawn; but the place is mine, and I choose to kill the cat and preserve the robin.

When emphasizing the domain of man, we may have to deal with the killing of creatures which are injurious to his interests. Nature-study may be tributary to this, in a measure, and indirectly, but it is surely not nature-study. For example, the child studies the cabbage butterfly in all its stages, the exquisitely sculptured yellow egg, the velvety green caterpillar, the chrysalis with its protecting colors, the white-winged butterfly, and becomes interested in the life of the insect. Not under any consideration, when the attention of the child is focused on the insect, should we suggest a remedy for it when a pest. Let the life-story of the butterfly stand as a fascinating page of nature's book. But later, when the child enters on his career as a gardener, when he sets out his row of cabbage plants and waters and cultivates them, and does his best to bring them to maturity, along comes the butterfly, now an arch enemy, and begins to rear her progeny on the product of his toil. Now the child's interest is focused on the cabbage, and the question is not one of killing insects so much as of saving plants. In fact, there is nothing in spraying the plants with Paris green which suggests cruelty to innocent caterpillars, nor is the process likely to harden the child's sensibilities.

To gain knowledge of the life-story of insects or other creatures is nature-study. To destroy them as pests is a part of Agriculture or Horticulture. The one may be of fundamental assistance to the other, but the two are quite separate and should never be confused.

THE FIELD NOTE-BOOK

A field note-book may be made a joy to the pupil and a help to the teacher. Any kind of a blank book will do for this, except that it should not be too large to be carried in the pocket, and it should always have the pencil attached. To make the note-book a success the following rules should be observed:

(a) The book should be considered the personal property of the child and should never be criticized by the teacher except as a matter of encouragement; for the spirit in which the notes are made, is more important than the information they cover.

(b) The making of drawings should be encouraged for illustrating what is observed. A graphic drawing is far better than a long description of a natural object.

(c) The note-book should not be regarded as a part of the work in English. The spelling, language and writing of the notes should all be exempt from criticism.

(d) As occasion offers, outlines for observing certain plants or animals may be placed in the note-book previous to the field excursion so as to give definite points for the work.
(e) No child should be compelled to have a note-book.

The field note-book is a veritable gold mine for the nature-study teacher to work, in securing voluntary and happy observations from the pupils concerning their out-of-door interests. It is a friendly gate which admits the teacher to a knowledge of what the child sees and cares for. Through it she may discover where the child's attention impinges upon the realm of nature and thus may know where to find the starting point for cultivating larger intelligence and a wider interest.

<table>
<thead>
<tr>
<th>Trip No. 273</th>
<th>Chapter XXV</th>
<th>297</th>
<th>Jan. 1</th>
</tr>
</thead>
</table>

Chapter XXV

January

This afternoon, the glorious birthday of a new year, I donned my boots and an overcoat, pocketed my opera glasses and notebook, and started briskly off to Petaxton. The sky above was flecked with clouds, like shields of snowy cotton; the air was warm and spring-like; the violets, snow-covered hills, checked with dark wood and broad fields, had thrown off for a time the brown homesickness of labor and had decked themselves in the gladness summing up the Snow-Bird.

Along by Wagner's orchard I saw a white-breasted nuthatch flitting among branches of an old apple tree. A goldfinch flew overhead, and I noticed that he called "fare-thee-well" on the descending part of each wave of his undulating flight.

In the snow along the railroad, where the requisite sawchick, I found a number of bird tracks, and made

A page from the field note-book of a lad of fourteen who read Thoreau and admired the books of Thompson-Seton.
I have examined many field note-books kept by pupils in the intermediate grades and have been surprised at their plenitude of accurate observation and graphic illustration. These books ranged from blank account books furnished by the family grocer up to a quarto, the pages of which were adorned with many marginal illustrations made in passionate admiration of Thompson-Seton’s books and filled with carefully transcribed text, that showed the direct influence of Thoreau. These books, of whatever quality, are precious beyond price to their owners. And why not? For they represent what cannot be bought or sold, personal experience in the happy world of out-of-doors.

THE FIELD EXCURSION

ANY teachers look upon the field excursion as a precarious voyage, steered between the Scylla of hilarious seeing too much and the Charybdis of seeing nothing at all because of the zest which comes from freedom in the fields and wood. This danger can be obviated if the teacher plans the work definitely before starting, and demands certain results.

It is a mistake to think that a half day is necessary for a field lesson, since a very efficient field trip may be made during the ten or fifteen minutes at recess, if it is well planned. Certain questions and lines of investigation should be given the pupils before starting and given in such a manner as to make them thoroughly interested in discovering the facts. A certain teacher in New York State has studied all the common plants and trees in the vicinity of her school with these recess excursions and the pupils have been enthusiastic about the work.

The half hour excursion should be preceded by a talk concerning the purposes of the outing and the pupils must know that certain observations are to be made or they will not be permitted to go again. This should not be emphasized as a punishment; but they should be made to understand that a field excursion is only, naturally enough, for those who wish to see and understand outdoor life. For all field work, the teacher should make use of the field notebook which should be a part of the pupils’ equipment.

PETS AS NATURE-STUDY SUBJECTS

LITTLE attention has been given to making the child understand what would be the lives of his pets if they were in their native environment; or to relating their habits and lives as wild animals. Almost any pet, if properly observed, affords an admirable opportunity for understanding the reasons why its structure and peculiar habits may have made it successful among other creatures and in other lands.

Moreover the actions and the daily life of the pet make interesting subject matter for a note-book. The lessons on the dog, rabbit and horse as given in this volume may suggest methods for such study, and with apologies that it is not better and more interesting, I have placed with the story of the squirrel a few pages from one of my own note-books regarding my experiences with “Furry.” I include this record as a suggestion for the children that they should keep note-books of their pets. It will lead
them to closer observation and to a better and more natural expression of their experiences.

THE CORRELATION OF NATURE-STUDY WITH LANGUAGE WORK

NATURE-STUDY should be so much a part of the child's thought and interest that it will naturally form a thought core for other subjects quite unconsciously on his part. In fact, there is one safe rule for correlation in this case, it is legitimate and excellent training as long as the pupil does not discover that he is correlating. But there is something in human nature which revolts against doing one thing to accomplish quite another. A boy once said to me, "I'd rather never go on a field excursion than to have to write it up for English," a sentiment I sympathized with keenly; ulterior motive is sickening to the honest spirit. But if that same boy had been a member of a field class and had enjoyed all the new experiences and had witnessed the interesting things discovered on this excursion, and if later his teacher had asked him to write for her an account of some part of it, because she wished to know what he had discovered, the chances are that he would have written his story joyfully and with a certain pride that would have counted much for achievement in word expression.

When Mr. John Spencer, known to so many children in New York State as "Uncle John," was conducting the Junior Naturalist Clubs, the teachers allowed letters to him to count for language exercises; and the eagerness with which these letters were written should have given the teachers the key to the proper method of teaching English. Mr. Spencer requested the teachers not to correct the letters, because he wished the children to be thinking about the subject matter rather than the form of expression. But so anxious were many of the pupils to make their letters perfect, that they earnestly requested their teachers to help them write correctly, which was an ideal condition for teaching them English. Writing letters to Uncle John was such a joy to the pupils that it was used as a privilege and a reward of merit in many schools. One rural teacher reduced the percentage of tardiness to a minimum by giving the first period in the morning to the work in English which consisted of letters to Uncle John.

Why do pupils dislike writing English exercises? Simply because they are not interested in the subject they are asked to write about, and they know that the teacher is not interested in the information contained in the essay. But when they are interested in the subject and write about it to a person who is interested, the conditions are entirely changed. If the teacher, overwhelmed as she is by work and perplexities, could only keep in mind that the purpose of a language is, after all, merely to convey ideas, some of her perplexities would fade away. A conveyance naturally should be fitted for the load it is to carry, and if the pupil acquires the load first he is very likely to construct a conveyance that will be adequate. How often the conveyance is made perfect through much effort and polished through agony of spirit and the load entirely forgotten!

Nature-study lessons give much excellent subject matter for stories and essays, but these essays should never be criticized or defaced with the blue pencil. They should be read with interest by the teacher; the mis-
takes made in them, so transformed as to be unrecognizable, may be used for drill exercises in grammatical construction. After all, grammar and spelling are only gained by practice and there is no royal road leading to their acquirement.

THE CORRELATION OF NATURE-STUDY AND DRAWING

The correlation of nature-study and drawing is so natural and inevitable that it needs never be revealed to the pupil. When the child is interested in studying any object, he enjoys illustrating his observations with drawings; the happy absorption of children thus engaged is a delight to witness. At its best, drawing is a perfectly natural method of self-expression. The savage and the young child, both untutored, seek to express themselves and their experiences by this means. It is only when the object to be drawn is foreign to the interest of the child that drawing is a task.

Nature-study offers the best means for bridging the gap that lies between the kindergarten child who makes drawings because he loves to and is impelled to from within, and the pupil in the grades who is obliged to draw what the teacher places before him. From making crude and often meaningless pencil strokes, which is the entertainment of the young child, the outlining of a leaf or some other simple and interesting natural object, is a normal step full of interest for the child because it is still self-expression.

Miss Mary E. Hill gives every year in the Goodyear School of Syracuse an exhibition of the drawings made by the children in the nature-study classes; and these are universally so excellent that most people regard them as an exhibition from the Art Department; and yet many of these pupils have never had lessons in drawing. They have learned to draw because they like to make pictures of the living objects which they have studied. One year there were many pictures of toads in various stages in this exhibit, and although their anatomy was sometimes awry in the pictures, yet there was a certain vivid expression of life in their representation; one felt that the toads could jump. Miss Hill allows the pupils to choose their own medium, pencil, crayon, or water-color, and says that they seem to feel which is best. For instance, when drawing the outline of trees in winter they choose pencil, but when representing the trillium or iris they prefer the water-color, while for bitter-sweet and crocuses they choose the colored crayons.

It is through this method of drawing that which interests him, that the child retains and keeps as his own, what should be an inalienable right, a graphic method of expressing his own impressions. Too much have we emphasized drawing as an art; it may be an art, if the one who draws is an artist; but if he is not an artist he still has a right to draw if it pleases him to do so. We might as well declare that a child should not speak unless he put his words into poetry, as to declare that he should not draw because his drawings are not artistic.
THE CORRELATION OF NATURE-STUDY WITH GEOGRAPHY

Life depends upon its environment. Geographical conditions and limitations have shaped the mold into which plastic life has been poured and by which its form has been modified. It may be easy for the untrained mind to see how the deserts and oceans affect life. Cattle may not roam in the former because there is nothing there for them to eat, nor may they occupy the latter because they are not fitted for breathing air in the water. And yet the camel can endure thirst and live on the scant food of the desert; and the whale is a mammal fitted to live in the sea. The question is, how are we to impress the child with the "have to" which lies behind all these geographical facts. If animals live in the desert they have to subsist on scant and peculiar food which grows there; they have to get along with little water; they have to get along with heat and sand storms; they have to have eyes that will not become blinded by the vivid reflection of the sunlight on the sand; they have to be of sand color so that they may escape the eyes of their enemies or creep upon their prey unperceived.

All these have to's are not mere chance, but they have existed so long that the animal, by constantly coming in contact with them, has attained its present form and habits.

There are as just as many have to's in the stream or the pond back of the school-house, on the dry hillside behind it or in the woods beyond the creek as there are in desert or ocean; and when the child gets an inkling of this fact, he has made a great step into the realm of geography. When he realizes why water lilies can grow only in still water that is not too deep and which has a silt bottom, and why the cat-tails grow in swamps where there is not too much water, and why the mullen grows in the dry pasture, and why the hepatica thrives in the rich, damp woods, and why the daisies grow in the meadows, he will understand that this partnership of nature and geography illustrates the laws which govern life. Many phases of physical geography belong to the realm of nature-study; the brook, its course, its work or erosion and sedimentation; the rocks of many kinds, the soil, the climate, the weather, are all legitimate subjects for nature-study lessons.

THE CORRELATION OF NATURE-STUDY WITH HISTORY

There are many points where nature-study impinges upon history in a way that may prove the basis for an inspiring lesson. Many of our weeds, cultivated plants and domestic animals have been introduced from Europe and are a part of our colonial history; while there are many of the most commonly seen creatures which have played their part in the history of ancient times. For instance, the bees which gave to man the only means available to him for sweetening his food until the 17th century, were closely allied to the home life of ancient peoples. The buffalo which ranged our western plains had much to do with the life of the red man. The study of the grasshopper brings to the child’s attention stories
of the locusts' invasion mentioned in the Bible, and the stars which witnessed our creation and of which Job sang and the ancients wrote, shine over our heads every night.

But the trees, through the lengthy span of their lives, cover more history individually, than do other organisms. In glancing across the wood-covered hills of New York one often sees there, far above the other trees, the gaunt crowns of old white pines. Such trees belonged to the forest primeval and may have attained the age of two centuries; they stand there looking out over the world, relics of another age when America belonged to the red man, and the bear and the panther played or fought beneath them. The cedars live longer than do the pines and the great scarlet oak may have attained the age of four centuries before it yields to fate.

Perhaps in no other way may the attention of the pupil be turned so naturally to past events, as through the thought that the life of such a tree has spanned so much of human history. The life history of one of these ancient trees should be made the center of local history; let the pupils find when the town was first settled by the whites and where they came from and how large the tree was then. What Indian tribes roamed the woods before that and what animals were common in the forest when this tree was a sapling? Thus may be brought out the chief events in the history of the county and township, when they were established and for whom or what they were named; and a comparison of the present industries may be made with those of a hundred years ago.

The Correlation of Nature-Study with Arithmetic

The arithmetical problems presented by nature-study are many; some of them are simple and some of them are complicated, and all of them are illuminating. Seed distribution especially lends itself to computation; a milkweed pod contains 140 seeds; there are five such pods on one plant, each milkweed plant requires at least one square foot of ground to grow on; how much ground would be required to grow all of the seeds from this one plant? Or, count the seeds in one dandelion head, multiply by the number of flower heads on the plant and estimate how many plants can grow on a square foot, then ask a boy how long it would take for one dandelion plant to cover his father's farm with its progeny; or count the blossoms on one branch of an apple tree, later count the ripened fruit; what percentage of blossoms matured into fruit? Measuring trees, their height and thickness and computing the lumber they will make combines arithmetic and geometry, and so on ad infinitum.

As a matter of fact, the teacher will find in almost every nature lesson an arithmetic lesson; and when arithmetic is used in this work, it should be vital and inherent and not "tacked on;" the pupils should be really interested in the answers to their problems; and as with all correlation, the success of it depends upon the genius of the teacher.
GARDENING AND NATURE-STUDY

ERRONEOUSLY, some people maintain that gardening is nature-study; this is not so necessarily nor ordinarily. Gardening may be a basis for nature-study but it is rarely made so to any great extent. Even the work in children's gardens is so conducted that the pupils know little or nothing of the flowers or vegetables which they grow except their names, their uses to man and how to cultivate them. They are taught how to prepare the soil, but the reason for this from the plant's standpoint is never revealed; and if the child becomes acquainted with the plants in his garden, he makes the discovery by himself. All this is nothing against gardening! It is a wholesome and valuable experience for a child to learn how to make a garden even if he remains ignorant of the interesting facts concerning the plants which he there cultivates. But if the teachers are so inclined, they may find in the garden and its products, the most interesting material for the best of nature lessons. Every plant the child grows is an individual with its own peculiarities as well as those of its species in manner of growth. Its roots, stems and leaves are of certain form and structure; and often the special uses to the plant of its own kind of leaves, stems and roots are obvious. Each plant has its own form of flower and even its own tricks for securing pollination; and its own manner of developing and scattering its seeds. Every weed of the garden has developed some special method of winning and holding its place among the cultivated plants; and in no other way may the child so fully and naturally come into a comprehension of that term "the survival of the fittest" as by studying the ways of the fit as exemplified in the triumphant weeds of his garden.

Every earthworm working below the soil is doing something for the garden. Every bee that visits the flowers there is on an errand for the garden as well as for herself. Every insect feeding on leaf or root is doing something to the garden. Every bird that nests near by or that ever visits it, is doing something which affects the life and the growth of the garden. What all of these uninvited guests are doing is one field of garden nature-study. Aside from all this study of individual life in the garden which even the youngest child may take part in, there are the more advanced lessons on the soil. What kind of soil is it? From what sort of rock was it formed? What renders it mellow and fit for the growing of plants? Moreover, what do the plants get from it? How do they get it? What do they do with what they get?

This leads to the subject of plant physiology, the elements of which may be taught simply by experiments carried on by the children themselves, experiments which should demonstrate the sap currents in the plant; the use of water to carry food and in making the plant rigid; the use of sunshine in making the plant food in the leaf laboratories; the nourishment provided for the seed and its germination, and many other similar lessons.

A child who makes a garden, and thus becomes intimate with the plants he cultivates, and comes to understand the interrelation of the various forms of life which he finds in his garden, has progressed far in the fundamental knowledge of nature's ways as well as in a practical knowledge of agriculture.
LUCKILY, thumb-rule agriculture is being pushed to the wall in these enlightened days. Thumb rules would work much better if nature did not vary her performances in such a confusing way. Government experiment stations were established because thumb rules for farming were unreliable and disappointing; and all the work of all the experiment stations has been simply advanced nature-study and its application to the practice of agriculture. Both nature-study and agriculture are based upon the study of life and the physical conditions which encourage or limit life; this is known to the world as the study of the natural sciences; and if we see clearly the relation of nature-study to science, we may understand better the relation of nature-study to agriculture, which is based upon the sciences.

Nature-study is science brought home. It is a knowledge of botany, zoology and geology as illustrated in the dooryard, the corn-field or the woods back of the house. Some people have an idea that to know these sciences one must go to college; they do not understand that nature has furnished the material and laboratories on every farm in the land. Thus, by beginning with the child in nature-study we take him to the laboratory of the wood or garden, the roadside or the field, and his materials are the wild flowers or the weeds, or the insects that visit the golden-rod or the bird that sings in the maple tree, or the woodchuck whistling in the pasture. The child begins to study living things anywhere or everywhere, and his progress is always along the various tracks laid down by the laws of life, along which his work as an agriculturist must always progress if it is to be successful.

The child through nature-study learns the way a plant grows, whether it be an oak, a turnip or a pigweed; he learns how the roots of each is adapted to its needs; how the leaves place themselves to get the sunshine and why they need it; and how the flowers get their pollen carried by the bee or wind; and how the seeds are finally scattered and planted. Or he learns about the life of the bird, whether it be a chicken, an owl or a bobolink; he knows how each bird gets its food and what its food is, where it lives, where it nests and its relation to other living things. He studies the bumblebee and discovers its great mission of pollen carrying for many flowers, and in the end would no sooner strike it dead than he would voluntarily destroy his clover patch. This is the kind of learning we call nature-study and not science or agriculture. But the country child can never learn anything in nature-study that has not something to do with science; and that has not its own practical lesson for him, when he shall become a farmer.

Some have argued, "Why not make nature-study along the lines of agriculture solely? Why should not the child begin nature-study with the cabbage rather than the wild flowers?" This argument carried out logically provides recreation for a boy in hoeing corn rather than in playing ball. Many parents in the past have argued thus and have, in consequence, driven thousands of splendid boys from the country to the city with a loathing in their souls for the drudgery which seemed all there was to farm life. The reason why the wild flowers may be selected for begin-
ning the nature-study of plants, is because every child loves these wood-
land posies, and his happiest hours are spent in gathering them. Never
yet have we known of a case where a child having gained his knowledge of
the way a plant lives through studying the plants he loves, has failed to be
interested and delighted to find that the wonderful things he discovered
about his wild flower may be true of the vegetable in the garden, or the
purslane which fights with it for ground to stand upon.

Some have said, "We, as farmers, care only to know what concerns our
pocket-books; we wish only to study those things which we must, as
farmers, cultivate or destroy. We do not care for the butterfly, but we
wish to know the plum weevil; we do not care for the trillium but we are
interested in the onion; we do not care for the meadow-lark but we cherish
the gosling." This is an absurd argument since it is a mental
impossibility for any human being to discriminate between two things
when he knows or sees only one. In order to understand the important
economic relations to the world of one plant or animal, it is absolutely
necessary to have a wide knowledge of other plants and animals. One
might as well say, "I will see the approaching cyclone, but never look at
the sky; I will look at the clover but not see the dandelion; I will look for
the sheriff when he comes over the hill but will not see any other team on
the road."

Nature-study is an effort to make the individual use his senses instead
of losing them; to train him to keep his eyes open to all things so that his
powers of discrimination shall be based on wisdom. The ideal farmer is
not the man who by hazard and chance succeeds; he is the man who loves
his farm and all that surrounds it because he is awake to the beauty as well
as to the wonders which are there; he is the man who understands as far
as may be the great forces of nature which are at work around him, and
therefore, he is able to make them work for him. For what is agriculture
save a diversion of natural forces for the benefit of man? The farmer who
knows these forces only when restricted to his paltry crops, and has no
idea of their larger application, is no more efficient as a farmer than would
a man be as an engineer who knew nothing of his engine except how to
start and stop it.

In order to appreciate truly his farm, the farmer must needs begin as a
child with nature-study; in order to be successful and make the farm pay,
he must needs continue in nature-study; and to make his declining years
happy, content, full of wide sympathies and profitable thought, he must
needs conclude with nature-study; for nature-study is the alphabet of
agriculture and no word in that great vocation may be spelled without it.

NATURE-STUDY CLUBS

The organizing of a club by the pupils for the purpose of
studying out-of-door life, is a great help and inspiration
to the work in nature-study in the classroom. The
essays and the talks before the club, prove efficient aid in
English composition; and the varied interests of the
members of the club, furnish new and vital material for
study. A button or a badge may be designed for the club
and, of course, it must have constitution and by-laws.
The proceedings of the club meetings should be conducted
according to parliamentary rules; but the field excursions
should be entirely informal.
The meetings of the Junior Naturalists Clubs, as organized in the schools of New York State by Mr. John W. Spencer, were most impressive. The school session would be brought to a close, the teacher stepping down and taking a seat with the pupils. The president of the club, some bashful boy or slender slip of a girl would take the chair and conduct the meeting with a dignity and efficiency worthy of a statesman. The order was perfect, the discussion much to the point. I confess to a feeling of awe when I attended these meetings, conducted so seriously and so formally, by such youngsters. Undoubtedly, the parliamentary training and experience in speaking impromptu, are among the chief benefits of such a club.

These clubs may be organized for special study. In one bird club of which I know there have been contests. Sides were chosen and the number of birds seen from May 1st to 31st inclusive was the test of supremacy. Notes on the birds were taken in the field with such care, that when at the end of the month each member handed in his notes, they could be used as evidence of accurate identification. An umpire with the help of bird manuals decided the doubtful points. This year the score stood 79 to 81.

The programs of the nature club should be varied so as to be continually interesting. Poems and stories, concerning the objects studied, help make the program attractive.
HOW TO USE THIS BOOK

FIRST and indispensably, the teacher should have at hand the subject of the lesson. She should make herself familiar with the points covered by the questions and read the story before giving the lesson. If she does not have the time to go over the observations suggested, before giving the lesson, she should take up the questions with the pupils as a joint investigation, and be boon companion in discovering the story.

The story should not be read to the pupils. It is given as an assistance to the teacher, and is not meant for direct information to the pupils. If the teacher knows a fact in nature's realm, she is then in a position to lead her pupils to discover this fact for themselves.

Make the lesson an investigation and make the pupils feel that they are investigators. To tell the story to begin with, inevitably spoils this attitude and quenches interest.

The "leading thought" embodies some of the points which should be in the teacher's mind while giving the lesson; it should not be read or declared to the pupils.

The outlines for observations herein given, by no means cover all of the observations possible; they are meant to suggest to the teacher observations of her own, rather than to be followed slavishly.

The suggestions for observations have been given in the form of questions, merely for the sake of saving space. The direct questioning method, if not employed with discretion, becomes tiresome to both pupil and teacher. If the questions do not inspire the child to investigate, they are useless. To grind out answers to questions about any natural object is not nature-study, it is simply "grind," a form of mental activity which is of much greater use when applied to spelling or the multiplication table than to the study of nature. The best teacher will cover the points suggested for observations with few direct questions. To those who find the questions inadequate I will say that, although I have used these outlines once, I am sure I should never be able to use them again without making changes.

The topics chosen for these lessons may not be the most practical nor the most interesting nor the most enlightening that are to be found; they are simply those subjects which I have used in my classes, because we happened to find them at hand the mornings the lessons were given.

While an earnest attempt has been made to make the information in this book accurate, it is to be expected and to be hoped that many discrepancies will be found by those who follow the lessons. No two animals or plants are just alike, and no two people see things exactly the same way. The chief aim of this volume is to encourage investigation rather than to give information. Therefore, if mistakes are found, the object of the book will have been accomplished, and the author will feel deeply gratified. If the teacher finds that the observations made by her and her pupils, do not agree with the statements in the book, I earnestly enjoin upon her to trust to her own eyes rather than to any book.

No teacher is expected to teach all the lessons in this book. A wide range of subjects is given, so that congenial choice may be made.
PART II.

ANIMAL LIFE

I. BIRD STUDY

The reason for studying any bird is to ascertain what it does; in order to accomplish this, it is necessary to know what the bird is, learning what it is, being simply a step that leads to a knowledge of what it does. But, to hear some of our bird devotees talk, one would think that to be able to identify a bird is all of bird study. On the contrary, the identification of birds is simply the alphabet to the real study, the alphabet by means of which we may spell out the life habits of the bird. To know these habits is the ambition of the true ornithologist, and should likewise be the ambition of the beginner, even though the beginner be a young child.

Several of the most common birds have been selected as subjects for lessons in this book; other common birds, like the phoebe and wrens, have been omitted purposely; after the children have studied the birds, as indicated in the lessons, they will enjoy working out lessons for themselves with other birds. Naturally, the sequence of these lessons does not follow scientific classification; in the first ten lessons, an attempt has been made to lead the child gradually into a knowledge of bird life. Beginning with the chicken there follow naturally the lessons with pigeons and the canary; then there follows the careful and detailed study of the robins and constant comparison of them with the blue birds. This is enough for the first year in the primary grades. The next year the work begins with the birds that remain in the North during the winter, the chickadee, nuthatch and downy woodpecker. After these have been studied carefully, the teacher may be an opportunist when spring comes and select any of the lessons when the bird subjects are at hand. The classification suggested for the woodpeckers and the swallows is for more advanced pupils, as are the lessons on the geese and turkeys. It is to be hoped that these lessons will lead the child directly to the use of the bird manuals, of which there are several excellent ones.

BEGINNING BIRD STUDY IN THE PRIMARY GRADES

The hen is especially adapted as an object lesson for the young beginner of bird study. First of all, she is a bird, notwithstanding the adverse opinions of two of my small pupils who stoutly maintained that "a robin is a bird, but a hen is a hen." Moreover, the hen is a bird always available for nature-study; she looks askance at us from the crates of the world's marts; she comes to meet us in the country barnyard, stepping toward us sedately; looking at us earnestly, with one eye, then turning her
head so as to check up her observations with the other; meantime she asks us a little question in a wheedling, soft tone, which we understand perfectly to mean "have you perchance brought me something to eat?" Not only is the hen an interesting bird in herself, but she is a bird with problems; and by studying her carefully we may be introduced into the very heart and center of bird life.

This lesson may be presented in two ways: First, if the pupils live in the country where they have poultry at home, the whole series of lessons may best be accomplished through interested talks on the part of the teacher, which should be followed on the part of the children, by observations, which should be made at home and the results given in school in oral or written lessons. Second, if the pupils are not familiar with fowls, a hen and a chick, if possible, should be kept in a cage in the schoolroom for a few days, and a duck or gosling should be brought in one day for observation. The crates in which fowls are sent to market make very good cages. One of the teachers of the Elmira, N. Y. Schools introduced into the basement of the schoolhouse a hen, which there hatched her brood of chicks, much to the children's delight and edification. After the pupils have become thoroughly interested in the hen and are familiar with her ways, after they have fed her and watched her, and have for her a sense of ownership, the following lessons may be given in an informal manner, as if they were naturally suggested to the teacher's mind through watching the fowl.
FEATHERS AS CLOTHING

Teacher's Story

The bird's clothing affords a natural beginning for bird study because the wearing of feathers is a most striking character distinguishing birds from other creatures; also, feathers and flying are the first things the young child notices about birds.

The purpose of all these lessons on the hen are: (a) To induce the child to make continued and sympathetic observations on the habits of the domestic birds. (b) To cause him involuntarily to compare the domestic with the wild birds. (c) To induce him to think for himself why the shape of the body, wings, head, beak, feet, legs and feathers are adapted in each species to protect the bird and assist it in getting its living.

The overlapping of the feathers on a hen's back and breast is a pretty illustration of nature's method of shingling, so that the rain, finding no place to enter, drips off, leaving the bird's underclothing quite dry. It is interesting to note how a hen behaves in the rain; she droops her tail and holds herself so that the water finds upon her no resting place, but simply a steep surface down which to flow to the ground.

Each feather consists of three parts, the shaft or quill, which is the central stiff stem of the feather, giving it strength. From this quill come off the barbs which, toward the outer end, join together in a smooth web, making the thin, fan-like portion of the feather; at the base is the fluff, which is soft and downy and near to the body of the fowl. The teacher should put on the blackboard this figure so that incidentally the pupils may learn the parts of a feather and their structure. If a microscope is available, show both the web and the fluff of a feather under a three-fourths objective.

The feathers on the back of a hen are longer and narrower in proportion than those on the breast and are especially fitted to protect the back from rain; the breast feathers are shorter and have more of the fluff, thus protecting the breast from the cold as well as the rain. It is plain to any child that the soft fluff is comparable to our woolen underclothing while the smooth, overlapping web forms a rain and wind-proof outer coat. Down is a feather with no quill; young chicks are covered with down. A pin-feather is simply a young feather rolled up in a sheath, which bursts later and is shed, leaving the feather free to assume its form. Take a large pin-feather and cut the sheath open and show the pupils the young feather lying within.
When a hen oils her feathers it is a process well worth observing. The oil gland is on her back just at the base of the tail feathers; she squeezes the gland with her beak to get the oil and then rubs the beak over the surface of her feathers and passes them through it; she spends more time oiling the feathers on her back and breast than those on the other parts, so that they will surely shed water. Country people say when the hen oils her feathers, it is a sure sign of rain. The hen sheds her feathers once a year and is a most untidy looking bird meanwhile, a fact that she seems to realize, and is as shy and cross as a young lady caught in company in curl papers; but she seems very pleased with herself when she finally gains her new feathers.

Feathers of a rooster, showing their relative size, shape and position
1. neck hackle; 2. breast; 3. wing shoulder covert; 4. wing flight covert; 5. wing primary; 6. wing secondary; 7. wing covert; 8. back; 9. tail covert; 10. main tail; 11. fluff; 12. thigh; 13. saddle hackle; 14. the sickle or feather of beauty; 15. lesser sickle.
Prof. J. E. Rice in Rural School Leaflet.
Feathers as Clothing

Leading thought—Feathers grow from the skin of a bird and protect the bird from rain, snow, wind and cold. Some of the feathers act as cloaks or mackintoshes and others as underclothing.

Method—The hen should be at close range for this lesson where the children may observe how and where the different kinds of feathers grow. The pupils should also study separately the form of a feather from the back, from the breast, from the under side of the body, and a pin-feather.

Observations for pupils—
1. How are the feathers arranged on the back of the hen? Are they like shingles on the roof? If so, what for?
2. How does a hen look when standing in the rain?
3. How are the feathers arranged on the breast?
4. Compare a feather from the back and one from the breast and note the difference.
5. Are both ends of these feathers alike? If not, what is the difference?
6. Is the fluffy part of the feather on the outside or next to the bird’s skin? What is its use?
7. Why is the smooth part of the feather (the web) on the outside?
8. Some feathers are all fluff and are called “down.” At what age was the fowl all covered with down?
9. What is a pin-feather? What makes you think so?
10. How do hens keep their feathers oily and glossy so they will shed water?
11. Where does the hen get the oil? Describe how she oils her feathers and which ones does she oil most? Does she oil her feathers before a rain?

"How beautiful your feathers be!"
The Redbird sang to the Tulip-tree
New garbed in autumn gold.
"Alas!" the bending branches sighed,
"They cannot like your leaves abide
To keep us from the cold!"

— JOHN B. TABB.
FEATHERS AS ORNAMENT

Teacher's Story

The ornamental plumage of birds is one of the principal illustrations of a great principle of evolution. The theory is that the male birds win their mates because of their beauty, those that are not beautiful being doomed to live single and leave no progeny to inherit their dullness. On the other hand, the successful wooer hands down his beauty to his sons. However, another quite different principle acts upon the coloring of the plumage of the mother birds; for if they should develop bright colors themselves, they would attract the eyes of the enemy to their precious hidden nests; only by being inconspicuous, are they able to protect their eggs and nestlings from discovery and death. The mother partridge, for instance, is so nearly the color of the dead leaves on the ground about her, that we may almost step upon her before we discover her; if she were the color of the Oriole or tanager she would very soon be the center of attraction to every prowler. Thus, it has come about that among the birds the feminine love of beauty has developed the gorgeous colors of the males, while the need for protection of the home has kept the female plumage modest and unnoticeable.

The curved feathers of the rooster's tail are weak and mobile and could not possibly be of any use as a rudder; but they give grace and beauty to the fowl and cover the useful rudder feathers underneath by a feather fountain of iridescence. The neck plumage of the cock is also often luxurious and beautiful in color and quite different from that of the hen. Among the ducks the brilliant blue-green iridescent head of the drake and his wing bars are beautiful, and make his wife seem Quaker-like in contrast.

As an object lesson to instil the idea that the male bird is proud of his beautiful feathers, I know of none better than that presented by the turkey gobbler, for he is a living expression of self-conscious vanity. He spreads his tail to the fullest extent and shifts it this way and that to show the exquisite play of colors over the feathers in the sunlight, meanwhile throwing out his chest to call particular attention to his blue and red wattles; and to keep from bursting with pride he bubbles over in vain-glorious "gobbles."

The hen with her chicks and the turkey hen with her brood, if they follow their own natures, must wander in the fields for food. If they were bright in color, the hawks would soon detect them and their chances of escape would be small; this is another instance of the advantage to the young of adopting the colors of the mother rather than of the father; a fact equally true of the song birds in cases where the males are brilliant in color at maturity. The Baltimore oriole does not assist his mate in brooding, but he sits somewhere on the home tree and cheers her by his glorious song and by glimpses of his gleaming orange coat. Some have accused him of being lazy; on the contrary, he is a wise householder for, instead of attracting the attention of crow or squirrel to his nest, he distracts their attention from it by both color and song.

A peacock's feather should really be a lesson by itself, it is so much a thing of beauty. The brilliant color of the purple eye-spot, and the grace-
ful flowing barbs that form the setting to the central gem, are all a training in æsthetics as well as in nature-study. After the children have studied such a feather let them see the peacock either in reality or in picture and give them stories about this bird of Juno; a bird so inconspicuous if it were not for his great spread of tail, that a child seeing it first cried, "Oh, oh, see this old hen all in bloom!"

The whole question of sexual selection may be made as plain as need be for the little folks, by simply telling them that the mother bird chooses for her mate the one which is most brightly and beautifully dressed, and make much of the comb and wattles of the rooster and gobbler as additions to the brilliancy of their appearance.

LESSON II

Feathers as Ornament

Leading thought—The color of feathers and often their shape are for the purpose of making birds more beautiful; while in others, the color of the feathers protects them from the observation of their enemies.

Methods—While parts of this lesson relating to fowls, may be given in primary grades, it is equally fitted for pupils who have a wider knowledge of birds. Begin with a comparison of the plumage of the hen and the rooster. Then, if possible, study the turkey gobbler and a peacock in life or in pictures. Also the plumage of a Rouen duck and drake, and if possible, the Baltimore oriole, the goldfinch, the scarlet tanager and the cardinal.

Observations—1. Note difference in shape and color of the tail feathers of hen and rooster.
2. Do the graceful curved tail feathers of the rooster help him in flying? Are they stiff enough to act as a rudder?
3. If not of use in flying what are they for? Which do you think the more beautiful the hen or the rooster?
4. In what respects is the rooster a more beautiful fowl?
5. What other parts of the rooster's plumage is more beautiful than that of the hen?
6. If a turkey gobbler sees you looking at him he begins to strut. Do you think he does this to show off his tail feathers? Note how he turns his spread tail this way and that so the sunshine will bring out the beautiful changeable colors. Do you think he does this so you can see and admire him?
7. Describe the difference in plumage between the hen turkey and the gobbler? Does the hen turkey strut?
8. Note the beautiful blue-green iridescent head and wing patches
on the wings of the Rouen ducks? Is the drake more beautiful than the duck?

9. What advantage is it for these fowls to have the father bird more beautiful and bright in color than the mother bird?

10. In case of the Baltimore oriole is the mother bird as bright in color as the father bird? Why?

11. Study a peacock's feather. What color is the eye-spot? What color around that? What color around that? What color and shape are the outside barbs of the feather? Do you blame a peacock for being proud when he can spread a tail of a hundred eyes? Does the peahen have such beautiful tail feathers as the peacock?

![Peahens and peacocks](image)

*The bird of Juno glories in his plumes;
Pride makes the fowl to preen his feathers so.
His spotted train fetched from old Argus' head,
With golden rays like to the brightest sun,
Inserteth self-love in the silly bird;
Till midst its hot and glorious fumes
He spies his feet and then lets fall his plumes.*

The Peacock, Robert Greene, (1500).
HOW BIRDS FLY

Teacher's Story

O convince the children that a bird's wings correspond to our arms, they should see a fowl with its feathers off, prepared for market or oven, and they will infer the fact at once.

The bird flies by lifting itself through pressing down upon the air with its wings. There are several experiments which are needed to make the child understand this. It is difficult for children to conceive that the air is really anything, because they cannot see it; so the first experiment should be to show that the air is something we can push against or that pushes against us. Strike the air with a fan and we feel there is something which the fan pushes; we feel the wind when it is blowing and it is very difficult for us to walk against a hard wind. If we hold an open umbrella in the hand while we jump from a step we feel buoyed up because the umbrella presses down upon the air. The bird presses down upon the air with the wings, just as the open umbrella does. The bird flies by pressing down upon the air with its wings just as a boy jumps high by pressing down with his hands on his vaulting pole.

Hen with wing outstretched showing primaries and secondaries of the wing and the overlapping of the feathers.

From practical exercise on feathers by Prof. J. E. Rice in Rural School Leaflet.
Study wing and note: (a) That the wings open and close at the will of the bird. (b) That the feathers open and shut on each other like a fan. (c) When the wing is open the wing quills overlap, so that the air cannot pass through them. (d) When the wing is open it is curved so that it is more efficient, for the same reason that an umbrella presses harder against the atmosphere when it is open than when it is broken by the wind and turned wrong side out.

A wing feather has the barbs on the front edge lying almost parallel to the quill while those on the hind edge come off at a wide angle. The reason for this is easy to see, for this feather has to cut the air as the bird flies; and if the barbs on the front side were like those of the other side they would be torn apart by the wind. The barbs on the hind side of the feather form a strong, close web so as to press down on the air and not let it through. The wing quill is curved; the convex side is up and the concave side below during flight. The concave side, like the umbrella, catches more air than the upper side; the down stroke of the wing is forward and down; while on the up stroke, as the wing is lifted, it bends at the joint like a fan turned sidewise, and offers less surface to resist the air. Thus, the up stroke does not push the bird down.

Observations should be made on the use of the bird's tail in flight. The hen spreads her tail like a fan when she flies to the top of the fence; the robin does likewise when in flight. The fact that the tail is used as a rudder to guide the bird in flight, as well as to give more surface for pressing down upon the air, is hard for the younger pupils to understand, and perhaps can be best taught by watching the erratic unbalanced flight of young birds whose tail feathers are not yet grown.

The tail feather differs from the wing feather in that the quill is not curved, and the barbs on each side are of about equal length and lie at about the same angle on each side the quill. See Fig. p. 28.

References—The Bird Book, Eckstorm, pp. 75-92; Story of the Birds, Baskett, pp. 171-176; Bird Life, Chapman, p. 18; The Bird, Beebe, Ch. XIII; First Book of Birds, Miller.

LESSON III.

HOW BIRDS FLY

Leading thought—A bird flies by pressing down upon the air with its wings, which are made especially for this purpose. The bird's tail acts as a rudder during flight.

Method—The hen, it is hoped will by this time be tame enough so that the teacher may spread open her wings for the children to see. In addition, have a detached wing of a fowl such as are used in farm houses instead of a whisk-broom.

Observations—1. Do you think a bird's wings correspond to our arms? If so why?
2. Why do birds flap their wings when they start to fly?
3. Can you press against the air with a fan?
4. Why do you jump so high with a vaulting pole? Do you think the bird uses the air as you use the pole?
5. How are the feathers arranged on the wing so that the bird can use it to press down on the air?
6. If you carry an umbrella on a windy morning, which catches more wind, the under or the top side? Why is this? Does the curved surface of the wing act in the same way?

7. Take a wing feather. Are the barbs as long on one side of the quill as on the other? Do they lie at the same angle from the quill on both sides? If not why?

8. Which side of the quill lies on the outer side and which on the inner side of the wing?

9. Is the quill of the feather curved?

10. Which side is uppermost in the wing, the convex or the concave side? Take a quill in one hand and press the tip against the other. Which way does it bend easiest, toward the convex or the concave side? What had this to do with the flight of the bird?

11. If the bird flies by pressing the wings against the air on the down stroke, why does it not push itself downward with its wings on the up stroke?

12. What is the shape and arrangement of the feathers so as to avoid pushing the bird back to earth when it lifts its wings?

13. Why do you have a rudder to a boat?

14. Do you think a bird could sail through the air without something to steer with? What is the bird’s rudder?

15. Have you ever seen a young bird whose tail is not yet grown, try to fly? If so, how did it act?

16. Does the hen when she flies keep the tail closed or open like a fan?

17. Compare a tail feather with a wing feather and describe the difference.
EYES AND EARS OF BIRDS

Teacher's Story

The hen's eyes are placed at the side of the head so that she cannot see the same object with both eyes at the same time, and thus she has the habit of looking at us first with one eye and then the other to be sure she sees correctly; also the position of the hen's eyes give her a command of her entire environment. All birds have much keener eyes than have we; and they can adjust their eyes for either near or far vision much more effectively than we can; the hawk, flying high in the air, can see the mouse on the ground.

There is a wide range of colors found in the eyes of birds; white, red blue, yellow, brown, gray, pink, purple and green are found in the iris of different species. The hen's eye consists of a black pupil at the center, which must always be black in any eye, since it is a hole through which enters the image of the object. The iris of the hen's eye is yellow; there is apparently no upper lid but the lower lid comes up during the process of sleeping. When the bird is drowsy the little film lid comes out from the corner of the eye and spreads over it like a veil; just at the corner of our own eye, next the nose, is the remains of this film lid, although we cannot move it as the hen does.

The hearing of birds is very acute, although the ear is simply a hole in the side of the head in most cases, and is more or less covered with feathers. The hen's ear is like this in many varieties; but in others and in the roosters there are ornamental ear lobes.

LESSON IV

Eyes and Ears of Birds

Leading thought—The eyes and ears of birds are peculiar and very efficient.

Methods—The hen or chicken and the rooster should be observed for this lesson; notes may be made in the poultry yard or in the schoolroom when the birds are brought there for study.

Observations—1. Why does the hen turn her head first this side and that as she looks at you? Can she see an object with both eyes at once? Can she see well?
 2. How many colors are there in a hen's eye? Describe the pupil and the iris.
 3. Does the hen wink as we do? Has she any eyelids?
 4. Can you see the film lid? Does it come from above or below or the inner or outer corner? When do you see this film lid?
 5. Where are the hen's ears? How do they look? How can you tell where the rooster's ears are?
 6. Do you think the hen can see and hear well?
THE FORM AND USE OF BEAKS

Teacher's Story

INCE the bird uses its arms and hands for flying, it has been obliged to develop other organs to take their place, and of their work the beak does its full share. It is well to emphasize this point by letting the children at recess play the game of trying to eat a tan apple or to put up their books and pencils with their arms tied behind them; such an experiment will show how naturally the teeth and feet come to the aid when the hands are useless.

The hen feeds upon seeds and insects which she finds on or in the ground. Her beak is horny and sharp and acts not only as a pair of nippers, but also as a pick as she strikes it into the soil to get the seed or insect, having already made bare the place by scratching away the grass or surface of the soil with her strong, stubby toes. The hen does not have any teeth, nor does she need any, for her sharp beak enables her to seize her food; and she does not need to chew it, since her gizzard does this for her after the food is swallowed.

The duck's bill is broad, flat, and much softer than the hen's beak. The duck feeds upon water insects and plants; it attains these by thrusting its head down into the water, seizing the food and holding it fast while the water is strained out through the sieve at the edges of the beak; for this use, a wide, flat beak is necessary. It would be quite as impossible for a duck to pick up hard seeds with its broad, soft bill as it would for the hen to get the duck's food out of the water with her narrow, horny bill.

Both the duck and hen use their bills for cleaning and oiling their feathers and for fighting also; the hen strikes a sharp blow with her beak making a wound like a dagger, while the duck seizes the enemy and simply pinches hard. Both fowls also use their beaks for turning over the eggs when incubating, and also as an aid to the feet when they make nests for themselves.

The nostrils are very noticeable and are situated in the beak near the base. However, we do not believe that birds have a keen sense of smell since their nostrils are not surrounded by a damp, sensitive, soft surface as are the nostrils of the deer and dog, this arrangement aiding these animals to detect odor in a marvelous manner.

LESSON V

The Beak of a Bird

Leading thought—Each kind of bird has a beak especially adapted for getting its food. The beak and feet of a bird are its chief weapons and implements.

Methods—Study first the beak of the hen or chick and then that of the duckling or gosling.

Observations—1. What kind of food does the hen eat and where and how does she find it in the field or garden? How is her beak adapted to get this food? If her beak were soft like that of a duck could she peck so hard for seeds and worms? Has the hen any teeth? Does she need any?
2. Compare the bill of the hen with that of the duck? What are the differences in shape? Which is the harder?
3. Note the saw teeth along the edge of the duck’s bill. Are these for chewing? Do they act as a strainer? Why does the duck need to strain its food?
4. Could a duck pick up a hen’s food from the earth or the hen strain out a duck’s food from the water? For what other things than getting food do these fowls use their bills?
5. Can you see the nostrils in the bill of a hen? Do they show plainer in the duck? Do you think the hen can smell as keenly as the duck?

Supplementary reading—The Bird Book, p. 99; The First Book of Birds, pp. 95-7; Mother Nature’s Children, Chapter VIII.

“It is said that nature-study teaching should be accurate, a statement that every good teacher will admit without debate; but accuracy is often interpreted to mean completeness, and then the statement cannot pass unchallenged. To study ‘the dandelion,’ ‘the robin,’ with emphasis on the particle ‘the,’ working out the complete structure, may be good laboratory work in botany or zoology for advanced pupils, but it is not an elementary educational process. It contributes nothing more to accuracy than does the natural order of leaving untouched all those phases of the subject that are out of the child’s reach; while it may take out the life and spirit of the work, and the spiritual quality may be the very part that is most worth the while. Other work may provide the formal ‘drill;’ this should supply the quality and vivacity. Teachers often say to me that their children have done excellent work with these complete methods, and they show me the essays and drawings; but this is no proof that the work is commendable. Children can be made to do many things that they ought not to do and that lie beyond them. We all need to go to school to children.”—“The Outlook to Nature,” L. H. Bailey.

"Weather and wind and waning moon,
Plain and hilltop under the sky,
Ev’n’ing, morning and blazing noon,
Brother of all the world am I.
The pine-tree, linden and the maize,
The insect, squirrel and the kine,
All—natively they live their days—
As they live theirs, so I live mine,
I know not where, I know not what:—
Believing none and doubting none
What’er befalls it counteth not,—
Nature and Time and I are one."

—L. H. Bailey.
THE FEET OF BIRDS

Teacher’s Story

BVIously, the hen is a digger of the soil; her claws are long, strong and slightly hooked, and her feet and legs are covered with horny scales as a protection from injury when used in scratching the hard earth, in order to lay bare the seeds and insects hiding there. The hen is a very good runner indeed. She lifts her wings a little to help, much as an athletic runner uses his arms, and so can cover ground with amazing rapidity, her strong toes giving her a firm foothold. The track she makes is very characteristic; it consists of three toe-marks projecting forward and one backward. A bird’s toes are numbered thus:

A duck has the same number of toes as the hen, but there is a membrane, called the web, which joins the second, third and fourth toes, making a fan-shaped foot; the first or the hind toe has a little web of its own. A webbed foot is first of all a paddle for propelling its owner through the water; it is also a very useful foot on the shores of ponds and streams, since its breadth and flatness prevent it from sinking into the soft mud.

The duck’s legs are shorter than those of the hen and are placed farther back and wider apart. The reason for this is, they are essentially swimming organs and are not fitted for scratching nor for running. They are placed at the sides of the bird’s body so that they may act as paddles, and are farther back so that they may act like the wheel of a propeller in
pushing the bird along. We often laugh at a duck on land, since its short legs are so far apart and so far back that its walk is necessarily an awkward waddle; but we must always remember that the duck is naturally a water bird, and on the water its movements are graceful. Think once, how a hen would appear if she attempted to swim! The duck's body is so ill balanced on its short legs that it cannot run rapidly; and if chased even a short distance, will fall dead from the effort, as many a country child has discovered to his sorrow when he tried to drive the ducks home from the creek or pond to coop. The long, hind claw of the hen enables her to clasp a roost firmly during the night; a duck's foot could not do this and the duck sleeps squatting on the ground. However, the Muscovy ducks, which are not good swimmers, have been known to perch.

LESSON VI

THE FEET OF BIRDS

Leading thought—The feet of birds are shaped so as to assist the bird in getting its food as well as for locomotion.

Methods—The pupils should have opportunity to observe the chicken or hen and a duck as they move about; they should also observe the duck swimming.

Observations—1. Are the toes of the hen long and strong? Have they long, sharp claws at their tips?

2. How are the legs and feet of the hen covered and protected?

3. How are the hen's feet and legs fitted for scratching the earth, and why does she wish to scratch the earth?

4. Can a hen run rapidly? What sort of a track does she make?

5. You number your fingers with the thumb as number one and the little finger as five. How do you think the hen's toes are numbered?

6. Has the duck as many toes as the hen? What is the chief difference between the feet of the duck and the hen?

7. Which of the duck's toes are connected by a web? Does the web extend to the tips of the toes? What is the web for and how does it help the duck?

8. Are the duck's legs as long as the hen's? Are they placed farther forward or farther back than those of the hen? Are they farther apart?

9. Can a duck run as well as a hen? Can the hen swim at all?

10. Where does the hen sleep and how does she hold on to her perch? Could the duck hold on to a perch? Does the duck need to perch while sleeping?
Nature certainly pays close attention to details, and an instance of this is the little tooth on the tip of the upper mandible of the young chick to aid it in breaking out of its egg-shell prison; and since a tooth in this particular place is of no use later, it disappears. The children are delighted with the beauty of a fluffy, little chick with its bright, questioning eyes and its life of activity as soon as it is freed from the shell. What a contrast to the blind, bare, scrawny young robin, which seems to be all mouth! The difference between the two is fundamental since it gives a character for separating ground birds from perching birds. The young partridge, quail, turkey and chick are clothed and active and ready to go with the mother in search of food as soon as they are hatched; while the young of the perching birds are naked and blind, being kept warm by the brooding mother, and fed and nourished by food brought by their parents, until they are large enough to leave the nest. The down which covers the young chick differs from the feathers which come later; the down has no quill but consists of several flossy threads coming from the same root; later on, this down is pushed out and off by the true feathers which grow from the same sockets. The
pupils should see that the down is so soft that the little, fluffy wings of the chick are useless until the real wing feathers appear.

We chew food until it is soft and fine, then swallow it, but the chick swallows it whole and after being softened by juices from the stomach it passes into a little mill, in which is gravel that the chicken has swallowed, which helps to grind the food. This mill is called the gizzard and the pupils should be taught to look carefully at this organ the next time they have chicken for dinner. A chicken has no muscles in the throat, like ours, to enable it to swallow water as we do. Thus, it has first to fill its beak with water, then hold it up so the water will flow down the throat of itself. As long as the little chick has its mother's wings to sleep under, it does not need to put its head under its own wing; but when it grows up and spends the night upon a roost, it always tucks its head under its wing while sleeping.

The conversation of the barnyard fowl covers many elemental emotions and is easily comprehended. It is well for the children to understand from the first that the notes of birds mean something definite. The hen clucks when she is leading her chicks afield so that they will know where she is in the tall grass; the chicks follow "cheeping" or "peeping," as the children say, so that she will know where they are; but if a chick
Bird Study

feels itself lost its "peep" becomes loud and disconsolate; on the other hand, there is no sound in the world so full of cosy contentment as the low notes of the chick as it cuddles under the mother's wing. When a hen finds a bit of food she utters rapid notes which call the chicks in a hurry, and when she sees a hawk she gives a warning "q-r-r" which makes every chick run for cover and keep quiet. When hens are taking their sun and dust baths together, they evidently gossip and we can almost hear them saying, "Did you not think Madam Dorking made a great fuss over her egg to-day?" Or, "that overgrown young rooster has got a crow to match his legs, has he not?" Contrast these low tones to the song of the hen as she issues forth in the first warm days of spring and gives to the world one of the most joyous songs of all nature. There is quite a different quality in the triumphant cackle of a hen telling to the world that she has laid an egg and the cackle which comes from being startled. When a hen is sitting or is not allowed to sit, she is nervous and irritable and voices her mental state by scolding. When she is really afraid, she squalls and when seized by an enemy, she utters long, horrible squawks. The rooster crows to assure his flock that all is well; he also crows to show other roosters what he thinks of himself and of them. The rooster also has other notes; he will question you as you approach him and his flock, and he will give a warning note when he sees a hawk; when he finds some dainty tidbit he calls his flock of hens to him and they usually arrive just in time to see him swallow the morsel.

When roosters fight, they confront each other with their heads lowered and then try to seize each other by the back of the neck with their beaks, or strike each other with the wing spurs, or tear with the leg spurs. Weasels, skunks, rats, hawks and crows are the most common enemies of the fowls, and often a rooster will attack one of these invaders and fight valiantly; the hen will also fight if her brood is disturbed.
LESSON VII

CHICKEN WAYS

Leading thought—Chickens have interesting habits of life and extensive conversational powers.

Method—For this lesson it is necessary that the pupils observe the inhabitants of the poultry yard and answer these questions a few at a time.

Observations—1. Did the chick get out of the egg by its own efforts? For what use is the little tooth which is on the tip of the upper part of a young chicken’s beak? Does this remain?
2. What is the difference between the down of the chick and the feathers of the hen? The little chick has wings; why can it not fly?
3. Why is the chick just hatched so pretty and downy, while the young robin is so bare and ugly? Why is the young chick able to see while the young robin is blind?
4. How does the young chick get its food?
5. Does the chick chew its food before swallowing? If not, why?
6. How does the chick drink? Why does it drink this way?
7. Where does the chick sleep at night? Where will it sleep when it is grown up?
8. Where does the hen put her head when she is sleeping?
9. How does the hen call her chicks when she is with them in the field?
10. How does she call them to food?
11. How does she tell them that there is a hawk in sight?
12. What notes does the chick make when it is following its mother? When it gets lost? When it cuddles under her wing?
13. What does the hen say when she has laid an egg? When she is frightened? When she is disturbed while sitting on eggs? When she is grasped by an enemy? How do hens talk together? Describe a hen’s song.
14. When does the rooster crow? What other sounds does he make?
15. With what weapons does the rooster fight his rivals and his enemies?
16. What are the natural enemies of the barnyard fowls and how do they escape them?

Supplementary reading—True Bird Stories, Miller p. 102.
HERE is a mention of domesticated pigeons by writers three thousand years ago; and Pliny relates that the Romans were fervent pigeon fanciers at the beginning of the Christian era. All of our domestic varieties of pigeons have been developed from the Rock pigeon, a wild species common in Europe and Asia. The carrier pigeon was probably the first to be specially developed because of its usefulness; its love and devotion to mate and young and its homesickness when separated from them were used by man for his own interests. When a knight of old started off on a Crusade or to other wars, he took with him several pigeons from the home cote; and after riding many days he wrote a letter and tied it to the neck or under the wing of one of his birds, which he then set free, and it flew home with its message; later he would set free another in like manner. The drawback to this correspondence was that it went only in one direction; no bird from home brought message of cheer to the wandering knight. Now-a-days mail routes, telegraph wires and wireless currents enmesh our globe and the pigeon as a carrier is out-of-date; but fanciers still perfect the homer breed and train pigeons for very difficult flight competitions, some of them a distance of hundreds of miles. Recently a homer made one thousand miles in two days, five hours and fifty minutes. Read to the pupils "Arnaux" in Animal Heroes by Thompson Seton to give them an idea of the life of a homing pigeon.
The natural food of pigeons is grain; we feed them cracked corn, wheat, peas, Kafir corn, millet and occasionally hemp seed; it is best to feed mixed rations as the birds tire of the monotonous diet. Pigeons should be fed twice a day; the pigeon is the only bird which can drink like a horse, that is, with the head lowered. The walk of a pigeon is accompanied by a peculiar nodding as if the head were in some way attached to the feet, and this movement sends waves of iridescent colors over the bird’s plumage. The flight of the pigeon is direct without soaring, the wings move rapidly and steadily, the birds circling and sailing as they start or alight. The crow flaps hard and then sails for a distance when it is inspecting the ground, while the hawk soars on motionless wings. It requires closer attention to understand the language of the pigeon than that of the hen, nor has it so wide a range of expression as the latter; however, some emotions are voiced in the cooing, which the children will understand.

The nest is built of grass and twigs; the mother pigeon lays two eggs for a sitting; but in some breeds a pair will raise from seven to twelve broods per year. The eggs hatch in from sixteen to eighteen days, and both parents share the labors of incubating. In the case of the homer the father bird sits from 10 A. M. to 4 P. M. and the mother the remainder of the day and night. The devotion of pigeons to their mates and to their young is great, and has been sung by the poets and praised by the philosophers during many ages; some breeds mate for life. The young pigeons or squabs are fed in a peculiar manner; in the crops of both parents is secreted a cheesy substance, known as pigeon milk. The parent seizes the beak of the squab in its own and pumps the food from its own crop into the stomach of the young. This nutritious food is given to the squab for about five days and then replaced by grain which is softened in the parents’ stomachs, until the squabs are old enough to feed themselves. Rats, mice, weasels, and hawks are the chief enemies of the pigeons; since pigeons cannot fight, their only safety lies in flight.

As the original Rock pigeon built in caves, our domesticated varieties naturally build in the houses we provide for them. A pigeon house should not be built for more than fifty pairs; it should be well ventilated and kept clean; it should face the south or east and be near a shallow, running stream if possible. The nest boxes should be twelve inches square and nine inches in height with a door at one side, so
that the nest may remain hidden. In front of each door there should be a little shelf to act as a balcony on which the resting parent bird may sit and coo to relieve the monotony of the sitter. Some breeders make a double compartment instead of providing a balcony, while in Egypt branches are inserted in the wall just below the doors of the very ornamental pigeon houses. The houses should be kept clean and whitewashed with lime to which carbolic acid is added in the proportion of one teaspoonful of acid to two gallons of the wash; the leaf stems of tobacco should be given to the pigeons as material for building their nests, so as to help keep in check the bird lice. There should be near the pigeon house plenty of fresh water for drinking and bathing; also a box of table salt, and another of cracked oyster shell and another of charcoal as fine as ground coffee. Salt is very essential to the health of pigeons. The house should be high enough from the ground to keep the inmates safe from rats and weasels.

LESSON VIII

Pigeons

Leading thought—The pigeons differ in appearance from other birds and also in their actions. Their nesting habits are very interesting and there are many things that may be done to make the pigeons comfortable. They were, in ancient days, used as letter carriers.

Methods—If there are pigeons kept in the neighborhood, it is best to encourage the pupils to observe these birds out-of-doors. Begin the work with an interesting story and with a few questions which will arouse the pupils’ interest in the birds. A pigeon in a cage in the schoolroom for a special lesson on the bird’s appearance, is desirable but not necessary.

Observations—1. For an out-of-door exercise during recess let the pupils observe the pigeon and tell the colors of the beak, eyes, top of the head, back, breast, wings, tail, feet and claws. This exercise is excellent training to fit the pupils to note quickly the colors of the wild birds.

2. On what do pigeons feed? Are they fond of salt?

3. Describe how a pigeon drinks. How does it differ in this respect from other birds?

4. Describe the peculiar movement of the pigeon when walking.

5. Describe the pigeon’s flight. Is it rapid, high in the air, do the wings flap constantly, etc? What is the chief difference between the flight of pigeons, crows or hawks?
6. Listen to the cooing of a pigeon and see if you can understand the different notes.
7. Describe the pigeon’s nest. How many eggs are laid at a time?
8. Describe how the parents share the labors in hatching the eggs, and how long after the eggs are laid before the young hatch?
9. How do the parents feed their young and on what materials?
10. What are the enemies of pigeons and how do they escape from them? How can we protect them?
11. Describe how a pigeon house should be built.
12. What must you do for pigeons to keep them healthy and comfortable?
13. How many breeds of pigeons do you know? Describe them.

Supplementary reading—“Arnaux” in Animal Heroes, Thompson Seton; Audubon Leaflet, Nos. 2 and 6; Neighbors with Wings and Fins Ch. XV; Noah and the Dove, The Bible; Daddy Darwin’s Dove Cote, Mrs. Ewing; Squab Raising, Bul. of U. S. Dept. Agr.

For my own part I readily concur with you in supposing that housedoves are derived from the small blue rock-pigeon, Columba livia, for many reasons. * * * But what is worth a hundred arguments is, the instance you give in Sir Roger Mostyn’s housedoves in Caernarvonshire; which, though tempted by plenty of food and gentle treatment, can never be prevailed on to inhabit their cote for any time; but as soon as they begin to breed, betake themselves to the fastnesses of Ormshead, and deposit their young in safety amidst the inaccessible caverns and precipices of that stupendous promontory.

“You may drive nature out with a pitchfork, but she will always return.”

“Naturam expellas furca * * * tamen usque recurret.”

Virgil, as a familiar occurrence, by way of simile, describes a dove haunting the cavern of a rock in such engaging numbers, that I cannot refrain from quoting the passage.

“Qualis spelunca subito commota Columba,
Cui domus, et dulces latebroso in pumice nidi,
Fertil in arva volans, plausumque exterrita pennis
Dat tecto ingentem, novx aere lapsa quieto,
Radit iter liquidum, cereres neque commovet alas.”

“As when a dove her rocky hold forsakes,
Roused, in a fright her sounding wings she shakes;
The cavern rings with clattering:—out she flies,
And leaves her callow care, and cleaves the skies;
At first she flutters:—but at length she springs
To smoother flight, and shoots upon her wings.”

(Dryden’s Translation).

White of Selbourne.
THE CANARY AND THE GOLDFINCH

Teacher’s Story

In childhood the language of birds and animals is learned unconsciously. What child, who cares for a canary, does not understand its notes which mean loneliness, hunger, eagerness, joy, scolding, fright, love and song!

The pair of canaries found in most cages are not natural mates. The union is one de convenance, forced upon them by people who know little of bird affinities. We could hardly expect that such a mating would be always happy. The singer, as the male is called, is usually arbitrary and tyrannical and does not hesitate to lay chastising beak upon his spouse. The expression of affection of the two is usually very practical, consisting of feeding each other with many beguiling notes and much fluttering of wings. The singer may have several songs; whether he has many or few depends upon his education; he usually shows exultation when singing by throwing the head back like a prima-donna, to let the music well forth. He is usually brighter yellow in color with more brilliantly black markings than his mate; she usually has much gray in her plumage. But there are about fifty varieties of canaries and each has distinct color and markings.

Canaries should be given a more varied diet than most people think. The seeds we buy or that we gather from the plantain or wild grasses, they eat eagerly. They like fresh, green leaves of lettuce and chickweed and other tender herbage; they enjoy bread and milk occasionally. There should always be a piece of cuttle-fish bone or sand and gravel where they can get it, as they need grit for digestion. Above all, they should have fresh water. Hard-boiled egg is given them while nesting. The canary seed which we buy for them is the product of a grass in the Canary Islands. Hemp and rape seed are also sold for canary food.

The canary’s beak is wide and sharp and fitted for shelling seeds; it is not a beak fitted for capturing insects. The canary, when drinking, does not have to lift the beak so high in the air in order to swallow the water as do some birds. The nostrils are in the beak and are easily seen; the ear is hidden by the feathers. The canary is a fascinating little creature when it shows interest in an object; it has such a knowing look, and its perfectly round, black eyes are so intelligent and cunning. If the canary winks, the act is so rapid as to be seen with difficulty, but when drowsy, the little inner lid appears at the inner corner of its eye and the outer lids close so that we may be sure that they are there; the lower lid covers more of the eye than the upper.

The legs and toes are covered with scale armor; the toes have long, curved claws that are neither strong nor sharp but are especially fitted for holding to the perch; the long hind toe with its stronger claw makes complete the grasp on the twig. When the canary is hopping about on the bottom of the cage we can see that its toes are more fitted for holding to the perch than for walking.

When the canary bathes, it ducks its head and makes a great splashing with its wings and likes to get thoroughly wet. Afterward, it sits all bedraggled and “humped up” for a time and then usually preens its feathers as they dry. When going to sleep, it at first fluffs out its feathers and squats on the perch, draws back its head and looks very drowsy.
Later it tucks its head under its wing for the night, and then looks like a little ball of feathers on the perch.

Canaries make a great fuss when building their nest. A pasteboard box is usually given them with cotton and string for lining; usually one pulls out what the other puts in; and they both industriously tear the paper from the bottom of the cage to add to their building material. Finally, a make-shift of a nest is completed and the eggs are laid. If the singer is a good husband, he helps incubate the eggs and feeds his mate and sings to her frequently; but often he is quite the reverse and abuses her abominably. The nest of the caged bird is very different in appearance from the neat nests of grass, plant down, and moss which the wild ancestors of these birds made in some safe retreat in the shrubs or evergreens of the Canary Islands. The canary eggs are pale blue, marked with reddish-brown. The incubation period is 13 to 14 days. The young are as scrawny and ugly as most little birds and are fed upon food partially digested in the parents' stomachs. Their first plumage resembles that of the mother usually.

In their wild state in the Canary and Azore Islands, the canaries are olive green above with golden yellow breasts. When the heat of spring begins, they move up the mountains to cooler levels and come down again in the winter. They may rear three or four broods on their way up the mountains, stopping at successive heights as the season advances, until finally they reach the high peaks.

THE GOLDFINCH OR THISTLE BIRD

The goldfinches are bird midgets but their songs are so sweet and reedy that they seem to fill the world with music more effectually than many larger birds. They are fond of the seeds of wild grass, and especially so of thistle seed; and they throng the pastures and fence corners where the thistles hold sway. In summer, the male has bright yellow plumage with a little black cap "pulled down over his nose" like that of a grenadier. He has also a black tail and wings with white-tipped coverts and primaries. The tail feathers have white on their inner webs also, which does not show when the tail is closed. The female has the head and back brown and the under parts yellowish white, with wings and tail resembling those of the male except that they are not so vividly black. In winter the male dons a dress more like that of his mate; he loses his black cap but keeps his black wings and tail.
The song of the goldfinch is exquisite and he sings during the entire period of his golden dress; he sings while flying as well as when at rest. The flight is in itself beautiful, being wave-like up and down, in graceful curves. Mr. Chapman says when on the down half of the curve the male sings “Per-chick or-ree.” The goldfinch’s call notes and alarm notes are very much like those of the canary.

Since the goldfinches live so largely upon seeds of grasses, they stay with us in small numbers during the winter. During this period both parents and young are dressed in olive green, and their sweet call notes are a surprise to us of a cold, snowy morning, for they are associated in our memory with summer. The male dons his winter suit in October.

The goldfinch nest is a mass of fluffiness. These are the only birds that make feather beds for their young. But, perhaps, we should say beds of down, since it is the thistle down which is used for this mattress. The outside of the nest consists of fine shreds of bark or fine grass closely woven; but the inner portion is a mat of thistle down—an inch and a half thick of cushion for a nest which has an opening of scarcely three inches; sometimes the outside is ornamented with lichens. The nest is usually placed in some bush or tree, often in an evergreen, and not more than 5 or 6 feet from the ground; but sometimes it is placed 30 feet high. The eggs are from four to six in number and bluish white in color. The female builds the nest, her mate cheering her with song meanwhile; he feeds her while she is incubating and helps feed the young. A strange thing about the nesting habits of the goldfinches is that the nest is not built until August. It has been surmised that this nesting season is delayed until there is an abundance of thistle down for building material. Audubon Leaflet No. 17 gives special information about these birds and also furnishes an outline of the birds for the pupils to color.

LESSON IX

THE CANARY AND THE GOLDFINCH

Leading thought—The canary is a very close relative of the common wild goldfinch. If we compare the habits of the two we can understand how a canary might live if it were free.

Method—Bring a canary to the schoolroom and ask for observations. Request the pupils to compare the canary with the goldfinches which are common in the summer. The canary offers opportunity for very close observation which will prove excellent training for the pupils for beginning bird study.

Observations—1. If there are two canaries in the cage are they always pleasant to each other? Which one is the “boss?” How do they show displeasure or bad temper? How do they show affection for each other?

2. Which one is the singer? Does the other one ever attempt to sing? What other notes do the canaries make besides singing? How do they greet you when you bring their food? What do they say when they are lonesome and hungry?

3. Does the singer have more than one song? How does he act while singing? Why does he throw back his head like an opera singer when singing?
4. Are the canaries all the same color? What is the difference in color between the singer and the mother bird? Describe the colors of each in your note book as follows: Top and sides of head, back, tail, wings, throat, breast and under parts?

5. What does the canary eat? What sort of seeds do we buy for it? What seeds do we gather for it in our garden? Do the goldfinches live on the same seeds? What does the canary do to the seeds before eating them? What tools does he use to take off the shells?

6. Notice the shape of the canary's beak. Is it long and strong like a robin's? Is it wide and sharp so that it can shell seeds? If you should put an insect in the cage would the canary eat it?

7. Why do we give the canary cuttlebone? Note how it takes off pieces of the bone. Could it do this if its beak were not sharp?

8. Note the actions of the birds when they drink. Why do they do this?

9. Can you see the nostrils? Where are they situated? Why can you not see the ear?

10. When the canary is interested in looking at a thing how does it act? Look closely at its eyes? Does it wink? How does it close its eyes? When it is drowsy can you see the little inner lid come from the corner of the eye nearest the beak? Is this the only lid?

11. How are the legs and feet covered? Describe the toes. Compare the length of the claw with the length of the toe. What is the shape of the claw? Do you think that such shaped claws and feet are better fitted for holding to a branch than for walking? Note the arrangement of the toes when the bird is on its perch. Is the hind toe longer and stronger? If so, why? Do the canaries hop or walk about the bottom of the cage?

12. What is the attitude of the canary when it goes to sleep at night? How does it act when it takes a bath? How does it get the water over its head? Over its back? What does it do after the bath? If we forget to put in the bath dish how does the bird get its bath?

NESTING HABITS TO BE OBSERVED IN THE SPRING

13. When the canaries are ready to build a nest what material do we furnish them for it? Does the father bird help the mother to build the nest? Do they strip off the paper on the bottom of the cage for nest material? Describe the nest when it is finished.

14. Describe the eggs carefully. Does the father bird assist in sitting on the eggs? Does he feed the mother bird when she is sitting?

15. How long after the eggs are laid before the young ones hatch? Do both parents feed the young? Do they swallow the food first and partially digest it before giving it to the young?

16. How do the very young birds look? What is their appearance when they leave the nest? Does the color of their plumage resemble that of the father or the mother?

17. Where did the canaries originally come from? Find the place on the map.

Supplementary reading—“A Caged Bird,” Sarah Orne Jewett in Songs of Nature, p. 75; True Bird Stones, Miller.
The Goldfinch

Leading thought—Goldfinches are seen at their best in late summer or September when they appear in flocks wherever the thistle seeds are found in abundance. Goldfinches so resemble the canaries in form, color, song and habits that they are called wild canaries.

Method—The questions for this lesson should be given to the pupils before the end of school in June. The answers to the questions should be put in their field note-books and the results be reported to the teacher in class when the school begins in the autumn.

Observations—1. Where do you find the goldfinches feeding? How can you distinguish the father from the mother birds and from the young ones in color?
2. Describe the colors of the male goldfinch and also of the female as follows: Crown, back of head, back, tail, wings, throat, breast and lower parts. Describe in particular the black cap of the male.
3. Do you know the song of the goldfinch? Is it like the song of the canary? What other notes has the goldfinch?
4. Describe the peculiar flight of the goldfinches. Do they fly high in the air? Do you see them singly or in flocks usually?
5. Where do the goldfinches stay during the winter? What change takes place in the coat of the male during the winter? Why? What do they live upon during the winter?
6. At what time of year do the goldfinches build their nests? Why do they build these so much later than other birds? Describe the nest. Where is it placed? How far above the ground? How far from a stream or other water? Of what is the outside made? The lining? What is the general appearance of the nest? Do you think the goldfinches wait until the thistles are ripe in order to gather plenty of food for their young, or to get the thistle down for their nests? What is the color of the eggs?

Supplementary reading—True Bird Stories, Miller, pp. 6, 9, 26, 45. The Second Book of Birds, Miller, p. 82; Our Birds and Their Nestlings, Walker, pp. 180, 200.

Sometimes goldfinches one by one will drop
From low-hung branches; little space they stop,
But sip, and twitter, and their feathers sleek,
Then off at once, as in a wanton freak;
Or perhaps, to show their black and golden wings;
Pausing upon their yellow flutterings.

—John Keats.
THE ROBIN

Teacher's Story

MOST of us think we know the robin well, but very few of us know definitely the habits of this, our commonest bird. The object of this lesson is to form in the pupils a habit of careful observation, and enable them to read for themselves the interesting story of this little life which is lived every year before their eyes. Moreover, a robin note-book, if well kept, is a treasure for any child; and the close observation necessary for this lesson trains the pupils to note in a comprehending way the habits of other birds. It is the very best preparation for bird study of the right sort.

A few robins occasionally find a swamp where they can obtain food to nourish them during the northern winter, but for the most part, they go in flocks to our Southern States where they settle in swamps and cedar forests and live upon berries. They are killed in great numbers by the native hunters who eat them or sell them for table use, a performance not understandable to the northerner. The robins do not nest nor sing while in Southland, and no wonder! When the robins first come to us in the spring they feed on wild berries, being especially fond of those of the Virginia creeper. As soon as the frost is out of the ground they begin feeding on earthworms, cutworms, white grubs, and other insects. The male robins come first, but do not sing until their mates arrive.

The robin is ten inches long and the English sparrow is only six and one-third inches long; the pupils should get the sizes of these two birds fixed in their minds for comparison in measuring other birds. The father robin is much more decided in color than his mate; his beak is yellow, there is a yellow ring about the eye and a white spot above it. The head is black and the back slaty-brown; the breast is brilliant reddish brown or bay and the throat is white, streaked with black. The mother bird has paler back and breast and has no black upon the head. The wings of both are a little darker than the back, the tail is black with the two outer feathers tipped with white. These white spots do not show except when the bird is flying and are "call colors," that is, they enable the birds to see each other and thus keep together when flying in flocks during the night. The white patch made by the under tail-coverts serves a similar purpose. The feet and legs are strong and dark in color.

The robin has many sweet songs and he may be heard in the earliest dawn and also in the evenings; if he wishes to cheer his mate he may burst into song at any time. He feels especially songful before the summer showers when he seems to sing, "I have a theory, a theory, its going to rain." And he might well say that he also has a theory, based on experience, that a soaking shower will drive many of the worms and larvae in the soil up to the surface where he can get them. Besides these songs the robins have a great variety of notes which the female shares, although she is not a singer. The agonizing, angry cries they utter when they see a cat or squirrel must express their feelings fully; while they give a very different warning note when they see crow or hawk, a note hard to describe, but which is a long, not very loud squeak.

A robin can run or hop as pleases him best, and it is interesting to see one, while hunting earthworms run a little distance, then stop to bend the
head and listen for his prey, and when he finally seizes the earthworm he braces himself on his strong legs and tugs manfully until he sometimes almost falls over backward as the worm lets go its hold. The robins, especially at nesting time, eat many insects as well as earthworms.

The beginning of a robin's nest is very interesting; much strong grass, fine straw, leaves and rootlets are brought and placed on a secure support. When enough of this material is collected and arranged, the bird goes to the nearest mud puddle or stream margin and fills its beak with soft mud and going back "peppers" it into the nest material, and after the latter is soaked the bird gets into it and molds it to the body by nestling and turning around and around. In one case which the author watched the mother bird did this part of the building, although the father worked industriously in bringing the other materials. After the nest is molded but not yet hardened, it is lined with fine grass or rootlets. If the season is very dry and there is no soft mud at hand, the robins can build without the aid of this plaster. There are usually four eggs laid which are exquisite greenish blue in color.

Both parents share the monotonous business of incubating, and in the instance under the eyes of the author the mother bird was on the nest at night; the period of incubating is from eleven to fourteen days. The most noticeable thing about a very young robin is its wide, yellow-margined mouth, which it opens like a satchel every time the nest is jarred. This wide mouth cannot but suggest to anyone that it is meant
to be stuffed, and the two parents work very hard to fill it. Both parents feed the young and often the father feeds the mother bird while she is brooding. Professor Treadwell experimented with young robins and found that each would take 68 earthworms daily; these worms if laid end to end would measure about 14 feet. Think of 14 feet of earthworm being wound into the little being in the nest, no wonder that it grows so fast! I am convinced that each pair of robins about our house has its own special territory for hunting worms, and that any trespasser is quickly driven off. The young bird's eyes are unsealed when they are from six to eight days old, and by that time the feather tracts, that is, the place where the feathers are to grow, are covered by the spine-like pin-feathers; these feathers push the down out and it often clings to their tips. In eleven days the birds are pretty well feathered: their wing feathers are fairly developed but alas, they have no tail feathers! When a young robin flies from the nest he is a very uncertain and tippy youngster not having any tail to steer him while flying, nor to balance him when alighting.

It is an anxious time for the old robins when the young ones leave the nest, and they flutter about and scold at any one who comes in sight, so afraid are they that injury will come to their inexperienced young ones; for some time the parents care for the fledglings, solicitously feeding them and giving them warnings of danger. The young robin shows in its plumage its relation to the thrush family, for it is yellowish and very spotted and speckled, especially the breast. The parents may raise several broods, but they never use the same nest for two consecutive broods, both because it may be infested with parasites and because it is more or less soiled; although the mother robin works hard to keep it clean, carrying away all waste matter in her beak and dropping it. Robins do not sing much after the breeding season is over until after they have molted. They are fond of cherries and other pulp fruits and often do much damage to such crops. The wise orchardist will plant a few Russian mulberry trees at a reasonable distance from his cherry trees, and thus, by giving the robins a fruit which they like better, and which ripens a little earlier, he may save his cherries. It has been proven conclusively that the robins are far more beneficial than damaging to the farmer: they destroy many noxious insects, two-thirds of their food the entire year consisting of insects; during April and May they do a great work in destroying cutworms.

The robins stay with us later than most migrating birds, not leaving us entirely before November. Their chief enemies in northern climates are cats, crows and squirrels. Cats should be taught to let birds alone (see lesson on cat) or should be killed. The crows have driven the robins into villages where they can build their nests under the protection of man. If crows venture near a house to attack the robins, firing a gun at them once or twice will give them a hint which they are not slow to take. The robins of an entire neighborhood will attack a nest-robbing crow, but usually too late to save the nestlings. The robins can defend themselves fairly well against the red squirrel unless he steals the contents of the nest while the owners are away. There can be no doubt that the same pair of robins return to the same nesting place year after year. On the Cornell Campus a robin lacking the white tip on one side of his tail was noted to have returned to the same particular feeding ground for several years;
and we are very certain that the same female bird built in the vines of our piazza for seven consecutive years; it took two years to win her confidence; but after that, she seemed to feel as if she were a part of the family and regarded us all as friends. We were sure that during her fifth year she brought a new young husband to the old nesting site; probably her faithful old husband had been served for a dinner in some Tennessee hotel during the previous winter.

Young robins. Their spotted breasts show their relationship to the thrushes.
(Photo by Silas Lottridge).

LESSON X

The Robin

Leading thought—To understand all we can about the life and ways of the robin.

Methods—For first and second grades this work may be done by means of an extra blackboard, or what is far better, sheets of ordinary, buff, manilla wrapping paper fastened together at the upper end, so that they may be hung and turned over like a calendar. On the outside page make a picture of a robin in colored chalk or crayons, coloring according to the children's answers to questions of series "b". Devote each page to one series of questions, as given below. Do not show these questions to the pupils until the time is ripe for the observations. Those pupils giving accurate answers to these questions should have their names on a roll of honor on the last page of the chart.
For third or higher grades the pupils should have individual note-
books in which each one may write his own answers to the questions of the
successive series, which should be written on the blackboard at proper
time for the observations. This note-book should have a page about 6x8
inches and may be made of any blank paper. The cover or first page
should show the picture of the robin colored by the pupil, and may con-
tain other illustrative drawings, and any poems or other literature
pertinent to the subject. If prizes are awarded in the school, a bird book
should be given as award for the best note-book in the class.

Observations by pupils—Series a (To be given in March). 1. At
what date did you see the first robin this year?
2. Where did the robin spend the winter; did it build a nest or sing
when in its winter quarters?
3. What does it find to eat when it first comes in the spring? How
does this differ from its ordinary food?
4. Does the robin begin to sing as soon as it comes North?

Series b (To be given the first week of April). 1. How large is the
robin compared with the English sparrow?
2. What is the color of the beak? The eye? Around and above
the eye?
3. The color of the top of the head? The back? The throat? The
breast?
4. Do all the robins have equally bright colors on head, back and
breast?
5. What is the color of the wing feathers?
6. What is the color of the tail feathers? Where is the white on
them? Can the white spots be seen except during flight of the bird?
Of what use to the robin are these spots?
7. Is there white on the underside of the robin as it flies over you?
Where?
8. What is the color of the feet and legs?

Series c (To be given the second week of April).
1. At what time of day does the robin sing? Is it likely to sing
before a rain? How many different songs does a robin sing?
2. What note does a robin give when it sees a cat?
3. What sounds do the robins make when they see a crow or a
hawk?
4. Does a robin run or walk or hop?
5. Do you think it finds the hidden earthworm by listening? If so
describe the act.
6. Describe how a robin acts as it pulls a big earthworm out of the
ground.
7. Do robins eat other food than earthworms?

Series d (To be given by the middle of April). 1. At what date
did your pair of robins begin to build their nest?
2. Where was the nest placed and with what material was it begun?
3. Can you tell the difference in colors between the father and
mother birds? Do both parents help in making the nest?
4. How and with what material is the plastering done? How is
the nest molded into shape? Do both birds do this part of the work?
5. Where is the mud obtained and how carried to the nest?
6. How is the nest lined?

Series e (To be given a week after series d). 1. What is the number and color of the eggs in the nest?
2. Do both parents do the sitting? Which sits on the nest during the night?
3. Give the date when the first nestling hatches.
4. How does the young robin look? The color and size of its beak? Why is its beak so large? Can it see? Is it covered with down? Compare it to a young chick and describe the difference between the two.
5. What does the young robin do if it feels any jar against the nest? Why does it do this?
6. Do the young robins make any noise?
7. What do the parents feed their young? Do both parents feed them? Are the young fed in turns?
8. Does each pair of robins have a certain territory for hunting worms which is not trespassed upon by other robins?

Series f (To be given three days after series e). 1. How long after hatching before the young robin’s eyes are open? Can you see where the feathers are going to grow? How do the young feathers look?
2. How long after hatching before the young birds are covered with feathers?
3. Do their wing or tail feathers come first?
4. How is the nest kept clean?
5. Give the date when the young robins leave the nest? How do the old robins act at this important crisis?
6. Describe the young robin’s flight? Why is it so unsteady?
7. How do the young robins differ in colors of breast from the parents?
8. Do the parents stay with the young for a time? What care do they give them?
9. If the parents raise a second brood do they use the same nest?

Series g (To be given for summer reading and observations). 1. Do the robins sing all summer? Why?
2. Do the robins take your berries and cherries? How can you prevent them from doing this?
3. How does the robin help us?
4. How long does it stay with us in the fall?
5. What are the chief enemies of the robin and how does it fight or escape them? How can we help protect it?
6. Do you think the same robins come back to us each year?

THE BLUEBIRD

Teacher's Story

Stern as were our Pilgrim Fathers, they could not fail to welcome certain birds with plumage the color of June skies, whose sweet voices brought hope and cheer to their homesick hearts at the close of that first, long, hard winter of 1621. The red breasts of these birds brought to memory the robins of old England and so they were called "Blue robins"; and this name expresses well the relationship implied, because the bluebirds and robins of America are both members of the thrush family, a family noted for exquisite song.

The bluebirds are usually ahead of the robins in the northward journey and arrive in New York often amid the blizzards of early March, their soft, rich "curly" notes bringing, even to the doubting mind, glad convictions of coming spring. There is a family resemblance between voices of bluebird and robin, a certain rich quality of tone, but the robin's song is far more assertive and complex than is the soft, "purling" song of the bluebird, which has been vocalized as "tru-al-ly, tru-al-ly." These love songs cease with the hard work of feeding the nestlings in April, but may be heard again as a prelude to the second brood in June. The red breast of the bluebird is its only color resemblance to the robin, although the young bluebirds and robins are both spotted, showing the thrush colors. The robin is so much larger than the bluebird that commonly the relationship is not noticed. This is easily explained because there is nothing to suggest a robin in the exquisite cerulean blue of the bluebird's head, back, tail and wings. This color is most brilliant when the bird is on the wing, in the sunshine. However, there is a certain mirror-like quality in these blue feathers; and among leaf shadows or even among bare branches they in a measure, reflect the surroundings and render the bird less noticeable. The female is paler, being grayish blue above and with only a tinge of red-brown on the breast; both birds are white beneath.

The bluebirds haunt open woods, fields of second growth and especially old orchards. They flit about in companies of three or four until they mate for nesting. While feeding, the bluebird usually sits on a low branch keeping a keen eye on the ground below, now and then dropping suddenly on an unsuspecting insect and then returning to its perch; it does not remain on the ground hunting food as does the robin. The nest is usually built in a hole in a tree or post and is made of soft grass. A hollow apple tree is a favorite nesting site.

In building birdhouses we should bear in mind that a cavity about ten inches deep and six inches in height and width will give a pair of bluebirds room for building a nest. The opening should not be more than two or two and one-half inches in diameter and there should be no threshold; this latter is a very particular point. If there is a threshold or place to alight upon, the sparrows are likely to dispute with the bluebirds and drive them away, but the sparrow does not care for a place which has no threshold. The box for the bluebird may be made out of old boards or may be a section of an old tree trunk; it should be fastened from six to fifteen feet above the ground, and should be in nowise noticeable in color from its surroundings. To protect the nest from cats, barbed wire should
be wound around the tree or post below the box. If the box for the nest is placed upon a post the barbed wire will also protect it from the squirrels. The eggs are bluish white; the young birds, in their first feathers, are spotted on the back and have whitish breasts mottled with brown. The food of the nestlings is almost entirely insects. In fact, this bird during its entire life is a great friend to man. The food of the adult is more than three-fourths insects and the remainder is wild berries and fruits, the winter food being largely mistletoe berries. It makes a specialty of injurious beetles, caterpillars and grasshoppers, and never touches any of our cultivated fruits. We should do everything in our power to encourage and protect these birds from their enemies, which are chiefly cats, squirrels and English sparrows.

The migration takes place in flocks during autumn, but it is done in a most leisurely manner with frequent stops where food is plenty. The bluebirds we see in September are probably not the ones we have had with us during the summer, but are those which have come from farther north.

They winter largely in the Gulf States; the writer has often heard them singing in midwinter in Southern Mississippi. The bluebirds seem to be the only ones that sing while at their winter resorts. They live the year round in the Bermudas, contrasting their heavenly blue plumage with the vivid red of the cardinals. The bluebird should not be confused with the indigo bunting; the latter is darker blue and has a blue breast.

"Winged lute that we call a bluebird,
You blend in a silver strain
The sound of the laughing waters,
The patter of spring's sweet rain,
The voice of the winds, the sunshine,
And fragrance of blossoming things.
Ah! You are an April poem,
That God has dowered with wings."

—The Bluebird, Rexford.
LESSON XI

THE BLUEBIRD

Leading thought—The bluebird is related to the robins and thrushes and is as beneficial as it is beautiful. We should study its habits and learn how to make nesting boxes for it, and protect it in all ways.

Methods—The observations of this lesson must be made in the field and by the pupils individually. Give to each an outline of questions to answer through seeing. There should follow reading lessons on the bluebird's value to us and its winter migrations, and the lesson should end in discussions of best way to build boxes for its use in nesting season, its protection from cats and other enemies.

Observations—1. Which comes North earlier in spring the robin or the bluebird?
 2. How do the two resemble each other and differ from each other?
 3. Describe the bluebirds' song. Do they sing all summer?
 4. Describe the colors of the bluebird as follows: The head, back, breast, under parts, wings, tail. How does the male bluebird differ from his mate in colors?
 5. Where were the bluebirds you saw? What were they doing?
 If feeding, how did they act?
 6. Can you see the color of the bluebird as plainly when it is in a tree as when it is flying? If not, why?
 7. Where do the bluebirds build their nests? Of what material are the nests made? Do both parents work at the nest building?
 8. What is the color of the eggs? How do the young birds look, when old enough to leave the nest, as compared with their parents?
 9. What do the bluebirds eat? How do they benefit us? Do they do our fruit any injury?
 10. What can we do to induce the bluebirds to live near our houses? How can we protect them?
 11. Where do the bluebirds spend the winter?
 12. Make a colored picture of a bluebird. How can we tell the bluebird from the indigo bunting?
 13. What are the bluebirds' chief enemies?

Supplementary reading—Nestlings of Forest and Marsh, Wheelock, p. 62; True Bird Stories, Miller, p. 12; How to Attract the Birds, Blanchan; Bird Neighbors, Blanchan; Our Birds and their Nestlings, Walker, p. 17; Familiar Wild Animals, Lottridge; Audubon Leaflet, No. 24.

Hark! 'tis the bluebird's venturous strain
 High on the old fringed elm at the gate—
Sweet-voiced, valiant on the swaying bough,
 Alert, elate,
Dodging the fitful spits of snow,
 New England's poet-laureate
Telling me Spring has come again!—THOMAS BAILEY ALDRICH.
THE WHITE-BREASTED NUTHATCH

Teacher's Story

"The busy nuthatch climbs his tree
Around the great bole spirally,
Peeping into wrinkles gray,
Under ruffled lichens gay,
Lazily piping one sharp note
From his silver mailed throat."

—MAURICE THOMPSON.

LIHTE and mellow is the ringing "ank, ank" note of the nuthatch, and why need we allude to its nasal timbre! While it is not a strictly musical note, it has a most enticing quality and translates into sound the picture of bare-branched trees and the feeling of enchantment which permeates the forest in winter; it is one of the most "woody" notes in the bird repertoire. And while the singer of this note is not so bewitching as his constant chum the chickadee, yet it has many interesting ways quite its own. Nor is this "ank, ank," its only note. I have often heard a pair talking to each other in sweet confidential syllables, "wit, wit, wit" very different from the loud note meant for the world at large. The nuthatches and chickadees hunt together all winter; it is no mere business partnership but a matter of congenial tastes. The chickadees hunt over the twigs and smaller branches, while the nuthatches usually prefer the tree trunks and the bases of the branches; both birds like the looks of the world upside down, and while the chickadee hangs head down from a twig, the nuthatch is quite likely to alight head down on a tree bole, holding itself safely in this position by thrusting its toes out at right angles to the body, thus getting a firm hold upon the bark. Sometimes its foot will be twisted completely around, the front toes pointed up the tree. The foot is well adapted for clinging to the bark as the front toes are strong and the hind toe is very long and is armed with a strong claw. Thus equipped, this bird runs about on the tree so rapidly, it has earned the name of "tree mouse". It often ascends a tree trunk spirally but is not so hidebound in this habit as is the brown creeper. It runs up or down freely head first and never flops down backwards like a woodpecker.

In color the nuthatch is bluish gray above with white throat and breast and reddish underparts. The sides of the head are white; the black cap extends back upon the neck but is not "pulled down" to the eyes like the chickadees. The wing feathers are dark brown edged with pale gray. The upper middle tail feathers are bluish like the back; the others are dark brown and tipped with white in such a manner that the tail when spread shows a broad white border on both sides. The most striking contrast between the chickadee and nuthatch in markings is that the latter lacks the black bib. However, its entire shape is very different from that of the chickadee and its beak is long and slender, being as long or longer than its head, while the beak of the chickadee is a short, sharp, little pick. The bill of the nuthatch is exactly fitted to reach in crevices of the bark and pull out hiding insects, or to hammer open the shell of nut or acorn and get both the
meat of the nut and the grub feeding upon it. It will wedge an acorn into a seam in the bark and then throw back its head, woodpecker fashion, and drive home its chisel beak. But it does not always use common sense in this habit. I have often seen one cut off a piece of suet, fly off and thrust it into some crevice and hammer it as hard as if it were encased in a walnut shell. This always seems bad manners, like carrying off fruit from table d'hote; but the nuthatch is polite enough in using a napkin, for after eating the suet, it invariably wipes its bill on a branch, first one side then the other most assiduously until it is perfectly clean.

The nuthatches are a great benefit to our trees in winter, for then is when they hunt for hiding pests on their trunks. Their food consists of beetles, caterpillars, pupae of various insects, also seeds of ragweed, sunflowers, acorns, etc. While the nuthatch finds much of its food on trees, yet Mr. Torrey has seen it awkwardly turning over fallen leaves hunting for insects, and Mr. Baskett says it sometimes catches insects on the wing and gets quite out of breath from this unusual exercise.

It is only during the winter that we commonly see the nuthatches, for during the nesting season, they usually retire to the deep woods where they may occupy a cavity in a tree used by a woodpecker last year, or may make a hole for themselves with their sharp beaks. The nest is lined with leaves, feathers and hair; from five to nine creamy, speckled eggs are the treasure of this cave.

LESSON XII

THE NUTHATCH

Leading thought—The nuthatch is often a companion of the chickadees and woodpeckers. It has no black bib, like the chickadee, and it alights on a tree trunk head downward, which distinguishes it from woodpeckers.

Methods—This bird, like the chickadee and downy, gladly shares the suet banquet we prepare for them and may be observed at leisure while “at table.” The contrast between the habits of the nuthatch and those of its companions make it a most valuable aid in stimulating close and keen observation on the part of the pupils.

Observations—1. Where have you seen the nuthatches? Were they with other birds? What other birds?
2. Does a nuthatch usually alight on the ends of the branches of a tree or on the trunk and larger limbs? Does it usually alight head down or up? When it runs down the tree, does it go head first or does it back
down? When it ascends the tree does it follow a spiral path? Does it use its tail for a brace when climbing, as does the downy?

3. How are the nuthatch's toes arranged to assist it in climbing? Are the three front toes of each foot directed downward when the bird alights head downward? How does it manage its feet when in this position?

4. What is the general color of the nuthatch above and below? The color of the top and sides of head? Color of Back? Wings? Tail? Throat? Breast?

5. Does the black cap come down to the eyes on the nuthatch as on the chickadee? Has the nuthatch a black bib?

6. What is the shape of the beak of the nuthatch? For what is it adapted? How does it differ from the beak of the chickadee?

7. What is the food of the nuthatch? Where is it found? Does it open nuts for the grubs or the nut meat? Observe the way it strikes its beak into the suet, why does it strike so hard?

8. How would you spell this bird's note? Have you heard it give more than one note?

9. How does the nuthatch benefit our trees? At what season does it benefit them most? Why?

10. Where do the nuthatches build their nests? Why do we see the nuthatches oftener in winter than in summer?
THE CHICKADEE
Teacher’s Story

“He is the hero of the woods; there are courage and good nature enough in that compact little body, which you may hide in your fist, to supply a whole groveful of May songsters. He has the Spartan virtue of an eagle, the cheerfulness of a thrush, the nimbleness of Cock Sparrow, the endurance of the sea-birds condensed into his tiny frame, and there have been added a pertness and ingenuity all his own. His curiosity is immense, and his audacity equal to it; I have even had one alight upon the barrel of the gun over my shoulders as I sat quietly under his tree.”

—Ernest Ingersoll.

OEVER careless we may be of our bird friends when we are in the midst of the luxurious life of summer, even the most careless among us give pleased attention to the birds that bravely endure with us the rigors of winter. And when this winged companion of winter proves to be the most fascinating little ball of feathers ever created, constantly overflowing with cheerful song, our pleased attention changes to active delight. Thus it is, that in all the lands of snowy winters the chickadee is a loved comrade of the country wayfarer; that happy song “chick-a-dee-dee-dee” finds its way to the dullest consciousness and the most callous heart.

The chickadees appear in small flocks in the winter and often in company with the nuthatches. The chickadees work on the twigs and ends of branches, while the nuthatches usually mine the bark of the trunk and larger branches, the former hunting insect eggs and the latter, insects tucked away in winter quarters. When the chickadee is prospecting for eggs, it looks the twig over, first above and then hangs head down and inspects it from below; it is a thorough worker and doesn’t intend to overlook anything whatever; and however busily it is hunting, it always finds time for singing; whether on the wing or perched upon a twig or hanging from it like an acrobat, head down, it sends forth its happy “chickadeedee” to assure us that this world is all right and good enough for anybody. Besides this song, it begins in February to sing a most seductive “fee-bee,” giving a rising

Chick-a-dee-dee-dee
inflection to the first syllable and a long, falling inflection to the last, which makes it a very different song from the short, jerky notes of the phœbe-bird, which cuts the last syllable short and gives it a rising inflection. More than this, the chickadee has some chatty conversational notes, and now and then performs a bewitching little yodle, which is a fit expression of its own delicious personality.

The general effect of the colors of the chickadee is grayish brown above and grayish white below. The top of the head is black, the sides white, and it has a seductive little black bib under its chin. The back is grayish, the wings and tail are dark gray, the feathers having white margins. The breast is grayish white changing to buff or brownish at the sides and below. It is often called the “Black-capped Titmouse,” and it may always be distinguished by black cap and black bib. It is smaller than the English sparrow; its beak is a sharp little pick just fitted for taking insect eggs off twigs and from under bark. Insects are obliged to pass the winter in some stage of their existence, and many of them wisely remain in the egg until there is something worth doing in the way of eating. These eggs are glued fast to the food trees by the mother insect and thus provides abundant food for the chickadees. It has been estimated that one chickadee will destroy several hundred insect eggs in one day, and it has been proven that orchards frequented by these birds are much more free from insect pests than other orchards in the same locality. They can be enticed into orchards by putting up beef fat or bones and thus we can secure their valuable service. In summer these birds attack caterpillars and other insects.

When it comes to nest building, if the chickadees cannot find a house to rent they proceed to dig out a proper hole from some decaying tree, which they line with moss, feathers, fur or some other soft material. The nest is often not higher than six to ten feet from the ground. One which I studied was in a decaying fence post. The eggs are white, sparsely speckled and spotted with lilac or rufous. The young birds are often eight in number and how these fussy birdlings manage to pack themselves in such a small hole is a wonder, and probably gives them good discipline in bearing hardships cheerfully.
Reference—Useful Birds and Their Protection, Forbush, p. 163; Birds of Village and Field, Merriams; Bird Neighbors, Blancham.

LESSON XIII

The Chickadee

Leading thought—The chickadee is as useful as it is delightful; it remains in the North during winter, working hard to clear our trees of insect eggs and singing cheerily all day. It is so friendly that we can induce it to come even to the window sill, by putting out suet to show our friendly interest.

Methods—Put beef fat on the trees near the schoolhouse in December and replenish it afresh about every two or three weeks. The chickadees will come to the feast and may be observed all winter. Give the questions a few at a time and let the children read in the bird books a record of the benefits derived from this bird.

Observations—1. Where have you seen the chickadees? What were they doing? Were there several together?
2. What is the common song of the chickadee? What other notes has it? Have you heard it yodel? Have you heard it sing "fe-bee, fee-bee." How does this song differ from that of the phoebe-bird? Does it sing on the wing or when at rest?
3. What is the color of the chickadee: Top and sides of head, back, wings, tail, throat, breast, under parts? Compare size of chickadee with that of English sparrow.
4. What is the shape of the chickadee's bill and for what is it adapted? What is the food in winter? Where does the bird find it? How does it act when feeding and hunting for food?
5. Does the chickadee usually alight on the ends of the branches or on the larger portions near the trunk of the tree?
6. How can you distinguish the chickadees from their companions, the nuthatches?
7. Does the chickadee ever seem discouraged by the snow and cold weather? Do you know another name for the chickadee?
8. Where does it build its nest? Of what material? Have you ever watched one of these nests? If so, tell about it.
9. How does the chickadee benefit our orchards and shade trees? How can we induce it to feel at home with us and work for us?

THE DOWNY WOODPECKER

Teacher's Story

FRIEND Downy is the name this attractive little neighbor has earned, because it is so friendly to those of us who love trees. Watch it as it hunts each crack and crevice of the bark of your favorite apple or shade tree, seeking assiduously for cocoons and insects hiding there, and you will soon, of your own accord, call it friend; you will soon love its black and white uniform, which consists of a black coat speckled and barred with white and whitish gray vest and trousers. The front of the head is black and there is a black streak extending backward from the eye with a white streak above and also below it. The male has a vivid red patch on the back of the head, but his wife shows no such giddiness; plain black and white are good enough for her. In both sexes the throat and breast are white, the middle tail feathers black, while the side tail feathers are white, barred with black at their tips.

The downy has a way of alighting low down on a tree trunk or at the base of a larger branch and climbing upward in a jerky fashion; it never runs about over the tree nor does it turn around and go down head first, like the nuthatch; if it wishes to go down a short distance it accomplishes this by a few awkward, backward hops; but when it really wishes to descend, it flies off and down. The downy, as other woodpeckers, has a special arrangement of its physical machinery to enable it to climb trees in its own manner. In order to grasp the bark on the side of the tree more firmly, its fourth toe is turned backward to work as companion with the thumb. Thus it is able to clutch the bark as with a pair of nippers, two claws in front and two claws behind; and as another aid, the tail is arranged to prop the bird, like a bracket. The tail is rounded in shape and the middle feathers have rather strong quills; but the secret of the adhesion of the tail to the bark lies in the great profusion of barbs which, at the edge of the feathers, offer bristling tips, and when applied to the side of the tree act like a wire brush with all the wires pushing downward. This explains why the woodpecker cannot go backward without lifting the tail.

But even more wonderful than this, is the mechanism by which the downy and hairy woodpeckers get their food, which consists largely of wood-borers or larvae working under the bark. When the woodpecker wishes to get a grub in the wood, it seizes the bark firmly with its feet, uses its tail as a brace, throws its head and upper part of the body as far back as possible, and then drives a powerful blow with its strong beak. The beak is adapted for just this purpose, as it is wedge-shaped at the end, and is used like a mason's drill sometimes, and sometimes like a pick. When the bird uses its beak as a pick, it strikes hard, deliberate blows and the chips fly; but when it is drilling, it strikes rapidly and not so hard and quickly drills a small, deep hole leading directly to the burrow of the grub. When finally the grub is reached, it would seem well nigh impossible to pull it out through a hole which is too small and deep to admit of the beak
being used as pincers. This is another story and a very interesting one; the downy and hairy can both extend their tongues far beyond the point of the beak, and the tip of the tongue is hard and horny and covered with short backward-slanting hooks acting like a spear or harpoon, and when thrust into the grub pulls it out easily (see initial). The bones of the tongue have a spring arrangement; when not in use, the tongue lies soft in the mouth, like a wrinkled earthworm, but when in use, the bones spring out, stretching it to its full length and it is then slim and small. The process is like fastening a pencil to the tip of a glove finger; when drawn back the finger is wrinkled together, but when thrust out, straightens. This spring arrangement of the bones of the woodpecker's tongue is a marvellous mechanism and should be studied through pictures; see Birds, Eckstrom, Chapter XIV; The Bird, Beebe, p. 122; "The Tongues of Woodpeckers," Lucas, U. S. Department of Agriculture.

Since the food of the downy and the hairy is where they can get it all winter, there is no need for them to go South; thus they stay with us and work for us the entire year. We should try to make them feel at home with us in our orchards and shade trees by putting up pieces of beef fat, to convince them of their welcome. No amount of free food will pauperize these birds, for as soon as they have eaten of the fat, they commence to hunt for grubs on the tree and thus earn their feast. They never injure live wood.

James Whitcomb Riley describes the drumming of the woodpecker as "weeding out the lonesomeness" and that is exactly what the drumming of the woodpecker means. The male selects some dried limb of hard wood and there beats out his well-known signal which advertises far and near, " Wanted, a wife." And after he wins her, he still drums on for a time to cheer her while she is busy with her family cares. The woodpecker has no voice for singing, like the robin or thrush; and luckily, he does not insist on singing, like the peacock whether he can or not. He chooses rather to devote his voice to terse and business-like conversation; and when he is musically inclined, he turns drummer. He is rather particular about his instrument and having found one that is sufficiently resonant he returns to it day after day. While it is ordinarily the male that drums I once observed a female drumming. I told her that she was a bold minx and ought to be ashamed of herself; but within twenty minutes she had drummed up two red-capped suitors who chased each other about with great animosity, so her performance was evidently not considered improper in woodpecker society. I have watched a rival pair
of male downies fight for hours at a time, but their duel was of the French brand,—much fuss and no bloodshed. They advanced upon each other with much haughty glaring and scornful bobs of the head, but when they were sufficiently near to stab each other they beat a mutual and circum-spect retreat. Although we hear the male downies drumming every spring, I doubt if they are calling for new wives; I believe they are, in stead, calling the attention of their lawful spouses to the fact that it is time for nest building to begin. I have come to this conclusion because the downies and hairyies which I have watched for years have always come in pairs to partake of suet during the entire winter; and while only one at a time sits at meat and the lord and master is somewhat bossy, yet they seem to get along as well as most married pairs.

The downy's nest is a hole, usually in a partly decayed tree; an old apple tree is a favorite site and a fresh excavation is made each year. There are from four to six white eggs, which are laid on a nice bed of chips as fine almost as sawdust. The door to the nest is a perfect circle and about an inch and a quarter across.

The hairy woodpecker is fully one-third larger than the downy, measuring nine inches from tip of beak to tip of tail, while the downy measures only about six inches. The tail feathers at the side are white for the entire length, while they are barred at the tips in the downy. There is a black "parting" through the middle of the red patch on the back of the hairy's head. The two species are so much alike that it is difficult for the beginner to tell them apart. Their habits are very similar, except that the hairy lives in the woods and is not so commonly seen in orchards or on shade trees. The food of the hairy is much like that of the downy and it is, therefore, a beneficial bird and should be protected.

LESSON XIV

THE DOWNY WOODPECKER

Leading thought—The downy woodpecker remains with us all winter, feeding upon insects that are wintering in crevices and beneath the bark of our trees. It is fitted especially by shape of beak, tongue, feet and tail to get such food and it is a "friend in need" to our forest, shade and orchard trees.

Methods—If a piece of beef fat be fastened upon the trunk or branch of a tree, which can be seen from the schoolroom windows, there will be no lack of interest in this friendly little bird; for the downy will sooner or later find this feast spread for it and will come every day to partake. Give out the questions, a few at a time, and discuss the answers with the pupils.

Observations—1. What is the general color of the downy above and below? The color of the top of the head? Sides of the head? The throat and breast? The color and markings of the wings? Color and markings of the middle and side tail-feathers?

2. Do all downy woodpeckers have the red patch at the back of the head? If not, why?

3. What is the note of the downy? Does it make any other sound? Have you ever seen one drumming? At what time of the year? On what did it drum? What did it use for a drumstick? What do you suppose was the purpose of this music?
4. How does the downy climb a tree trunk? How does it descend? How do its actions differ from those of the nuthatch?

5. How are the woodpecker’s toes arranged to help it climb a tree trunk? How does this arrangement of toes differ from that of other birds?

6. How does the downy use its tail to assist it in climbing? What is the shape of the tail and how is it adapted to assist?

7. What does the downy eat and where does it find its food? Describe how it gets at its food. What is the shape of its bill and how is it fitted for getting the food? Tell how the downy’s tongue is used to spear the grub.

8. Why does the downy not go South in winter?

9. Of what use is this bird to us? How should we protect it and entice it into our orchards?

10. Write an English theme on the subject “How the downy builds its nest and rears its young”.

A few seasons ago a downy woodpecker, probably the individual one who is now my winter neighbor, began to drum early in March in a partly decayed apple-tree that stands in the edge of a narrow strip of woodland near me. When the morning was still and mild I would often hear him through my window before I was up, or by half-past six o’clock, and he would keep it up pretty briskly till nine or ten o’clock, in this respect resembling the grouse, which do most of their drumming in the forenoon. His drum was the stub of a dry limb about the size of one’s wrist. The heart was decayed and gone, but the outer shell was loud and resonant. The bird would keep his position there for an hour at a time. Between his drummings he would preen his plumage and listen as if for the response of the female, or for the drum of some rival. How swift his head would go when he was delivering his blows upon the limb! His beak wore the surface perceptibly. When he wished to change the key, which was quite often, he would shift his position an inch or two to a knot which gave out a higher, shriller note. When I climbed up to examine his drum he was much disturbed. I did not know he was in the vicinity, but it seems he saw me from a near tree, and came in haste to the neighboring branches, and with spread plumage and a sharp note demanded plainly enough what my business was with his drum. I was invading his privacy, desecrating his shrine, and the bird was much put out. After some weeks the female appeared; he had literally drummed up a mate; his urgent and oft-repeated advertisement was answered. Still the drumming did not cease, but was quite as fervent as before. If a mate could be won by drumming she could be kept and entertained by more drumming; courtship should not end with marriage. If the bird felt musical before, of course he felt much more so now. Besides that, the gentle deities needed propitiating in behalf of the nest and young as well as in behalf of the mate. After a time a second female came, when there was war between the two. I did not see them come to blows, but I saw one female pursuing the other about the place, and giving her no rest for several days. She was evidently trying to run her out of the neighborhood. Now and then she, too, would drum briefly as if sending a triumphant message to her mate.—Winter Neighbors, John Burroughs.
THE SAPSUCKER

Teacher's Story

The sapsucker is a woodpecker that has strayed from the paths of virtue; he has fallen into temptation by the wayside, and instead of drilling a hole for the sake of the grub at the end of it, he drills for drink. He is a tippler, and sap is his beverage; and he is also fond of the soft, inner bark. He often drills his holes in regular rows and thus girdles a limb or a tree, and for this is pronounced a rascal by men who have themselves ruthlessly cut from our land millions of trees that should now be standing. It is amusing to see a sapsucker take his tipple, unless his saloon happens to be one of our prized young trees. He uses his bill as a pick and makes the chips fly as he taps the tree; then he goes away and taps another tree. After a time he comes back and holding his beak close to the hole for a long time seems to be sucking up the sap; he then throws back his head and "swigs" it down with every sign of delirious enjoyment. The avidity with which these birds come to the bleeding wells which they have made, has in it all the fierceness of a toper crazy for drink; they are particularly fond of the sap of the mountain ash, apple, thorn apple, canoe birch, cut-leaf birch, red maple, red oak, white ash and young pines. However, the sapsucker does not live solely on sap, he also feeds upon insects whenever he can find them. When feeding their young, the sapsuckers are true fly-catchers snatching insects while on the wing. The male has the crown and throat crimson, edged with black with a black line extending back of the eye, bordered with white above and below. There is a large, black circular patch on the breast which is bordered at the sides and below with lemon yellow. The female is similar to the male and has a red forehead, but she has a white bib instead of a red one beneath the chin. The distinguishing marks of the sapsucker should be learned by the pupils. The red is on the front of the head instead of on the crown, as is the case with the downy and hairy; when it is flying the broad, white stripes extending from the shoulders backward, form a long, oval figure, which is very characteristic.

The sapsuckers spend the winter in the Southern States where they drill wells in the white oak and other trees. From Virginia to Northern New York and New England, where they breed, they are seen only during migration, which occurs in April; then the birds appear two and three together and are very bold in attacking shade trees, especially the white
Handbook of Nature-Study

birch. They nest only in the Northern United States and northward. The nest is usually a hole in a tree about forty feet from the ground, and is likely to be in a dead birch.

LESSON XV

The Sapsucker

Leading thought—The sapsucker has a red cap, a red bib and a yellow breast; it is our only woodpecker that does injury to trees. We should learn to distinguish it from the downy and hairy, as the latter are among the best bird friends of the trees.

Methods—Let the observations begin with the study of the trees which have been attacked by the sapsucker, which are almost everywhere common, and thus lead to an interest in the culprit.

Observations—1. Have you seen the work of the sapsucker? Are the holes drilled in rows completely around the tree? If there are two rows or more, are the holes set evenly one below another?

2. Do the holes sink into the wood, or are they simply through the bark? Why does it injure or kill a tree to be girdled with these holes? Have you ever seen the sapsuckers making these holes? If so, how did they act?

3. How many kinds of trees can you find punctured by these holes? Are they likely to be young trees?

4. How can you distinguish the sapsucker from the other woodpeckers? How have the hairy and downy which are such good friends of the trees been made to suffer for the sapsucker's sins?

5. What is the color of the sapsucker as follows: Forehead, sides of head, back, wings, throat, upper and lower breast? What is the difference in color between the male and female?

6. In what part of the country do the sapsuckers build their nests? Where do they make their nests and how?

Supplementary reading—Bird Neighbors, Blanchan; Birds, Bees and Sharp Eyes, John Burroughs.

In the following winter the same bird (a sapsucker) tapped a maple-tree in front of my window in fifty-six places; and, when the day was sunny and the sap oozed out he spent most of his time there. He knew the good sap-days, and was on hand promptly for his tipple; cold and cloudy days he did not appear. He knew which side of the tree to tap, too, and avoided the sunless northern exposure. When one series of well-holes failed to supply him, he would sink another, drilling through the bark with great ease and quickness. Then, when the day was warm, and the sap ran freely, he would have a regular sugar-maple debauch, sitting there by his wells hour after hour, and as just as they became filled sipping out the sap. This he did in a gentle, carressing manner that was very suggestive. He made a row of wells near the foot of the tree, and other rows higher up, and he would hop up and down the trunk as they became filled.—Winter Neighbors, John Burroughs.
THE RED-HEADED WOODPECKER

Teacher’s Story

The red-head is well named, for his helmet and visor show a vivid glowing crimson that stirs the sensibilities of the color lover. It is readily distinguished from the other woodpeckers because its entire head and bib are red. For the rest, it is a beautiful dark metallic blue with the lower back, a band across the wing, and the under parts white; its outer tail feathers are tipped with white. The female is colored like the male, but the young have the head and breast gray, streaked with black and white, and the wings barred with black. It may make its nest by excavating a hole in a tree or a stump or even in a telegraph pole; the eggs are glossy white. This woodpecker is quite different in habits from the hairy and downy, as it likes to flit along from stump to fence-post and catch insects on the wing, like a fly-catcher. The only time that it pecks wood is when it is making a hole for its nest.

As a drummer, the red-head is most adept and his roll is a long one. He is an adaptable fellow, and if there is no resonant dead limb at hand, he has been known to drum on tin roofs and lightning rods; and once we also observed him executing a most brilliant solo on the wire of a barbed fence. He is especially fond of beechnuts and acorns, and being a thrifty fellow as well as musical, in time of plenty he stores up food against time of need. He places his nuts in crevices and forks of the branches or in holes in trees or any other hiding place. He can shell a beechnut quite as cleverly as can the deer mouse; and he is own cousin to the Carpenter Woodpecker of the Pacific Coast, which is also red-headed and which drills holes in the oak trees wherein he drives acorns like pegs for later use.

LESSON XVI

The Red-headed Woodpecker

Leading thought—The red-headed woodpecker has very different habits from the downy and is not so useful to us. It lives upon nuts and fruit and such insects as it can catch upon the wing.

Methods—If there is a red-head in the vicinity of your school the children will be sure to see it. Write the following questions upon the blackboard and offer a prize to the first one who will make a note on where the red-head stores his winter food.
Observations—1. Can you tell the red-head from the other woodpeckers? What colors especially mark his plumage?

2. Where does the red-head nest? Describe eggs and nest?

3. What have you observed the red-head eating? Have you noticed it storing nuts and acorns for the winter? Have you noticed it flying off with cherries or other fruit?

4. What is the note of the red-head? Have you ever seen one drumming? What did he use for a drum? Did he come back often to this place to make his music?

Supplementary reading—‘‘The House That Fell’’ in Nestlings of Forest and Marsh; Our Birds and their Nestlings, p. 90; Birds, Bees and Sharp Eyes, John Burroughs.

Another trait our woodpeckers have that endears them to me, and that has never been pointedly noticed by our ornithologists, is their habit of drumming in the spring. They are songless birds, and yet all are musicians; they make the dry limbs eloquent of the coming change. Did you think that loud, sonorous hammering which proceeded from the orchard or from the near woods on that still March or April morning was only some bird getting its breakfast? It is downy, but he is not rapping at the door of a grub; he is rapping at the door of spring, and the dry limb thrills beneath the ardor of his blows. Or, later in the season, in the dense forest or by some remote mountain lake, does that measured rhythmic beat that breaks upon the silence, first three strokes following each other rapidly, succeeded by two louder ones with longer intervals between them, and that has an effect upon the alert ear as if the solitude itself had at least found a voice—does that suggest anything less than a deliberate musical performance? In fact, our woodpeckers are just as characteristically drummers as is the ruffed grouse, and they have their particular limbs and stubs to which they resort for that purpose. Their need of expression is apparently just as great as that of the song-birds, and it is not surprising that they should have found out that there is music in a dry, seasoned limb which can be evoked beneath their beaks.

The woodpeckers do not each have a particular dry limb to which they resort at all times to drum, like the one I have described. The woods are full of suitable branches, and they drum more or less here and there as they are in quest of food; yet I am convinced each one has its favorite spot, like the grouse, to which it resorts, especially in the morning. The sugar-maker in the maple woods may notice that this sound proceeds from the same tree or trees about his camp with great regularity. A woodpecker in my vicinity has drummed for two seasons on a telegraph-pole, and he makes the wires and glass insulators ring. Another drums on a thin board on the end of a long grape-arbor, and on still mornings can be heard a long distance.

A friend of mine in a Southern city tells me of a red-headed woodpecker that drums upon a lightning-rod on his neighbor’s house. Nearly every clear, still morning at certain seasons, he says, this musical rapping may be heard. ‘‘He alternates his tapping with his stridulous call, and the effect on a cool, autumn-like morning is very pleasing.’’—John Burroughs, in Birds, Bees and Sharp Eyes.
THE FLICKER OR YELLOW-HAMMER

Teacher's Story

The first time I ever saw a flicker I said, "What a wonderful meadow-lark and what is it doing on that ant hill?" But, another glance revealed to me a red spot on the back of the bird's neck, and as soon as I was sure that it was not a bloody gash, I knew that it marked no meadow-lark. The top of the flicker's head and its back are slaty-gray, which is much enlivened by a bright red band across the nape of the neck. The tail is black above and yellow tipped with black below; the wings are black, but have a beautiful luminous yellow beneath, which is very noticeable during flight. There is a locket adorning the breast which is a thin, black crescent, much narrower than that of the meadow-lark. Below the locket, the breast is yellowish white thickly marked with circular, black spots. The throat and sides of the head are pinkish brown, and the male has a black mustache extending backward from the beak with a very fashionable droop. Naturally enough the female, although she resembles her spouse, lacks his mustache. The beak is long, strong, somewhat curved and dark colored. This bird is distinctly larger than the robin. The white patch on the rump shows little or none when the bird is at rest, for this white mark is a "color call," it being a rear signal by means of which the flock of migrating birds are able to keep together in the night. The yellow-hammer's flight is wave-like and jerky and quite different from that of the meadow-lark; nor does it stay so constantly in the meadows but often frequents woods and orchards.

The flicker has many names, such as golden-winged woodpecker, yellow-hammer, high-hole, yarup, wake-up, clape and many others. It earned the name of high-hole because of its habit of excavating its nest high up in trees, usually between ten and twenty-five feet from the ground. It especially loves an old apple tree as a site for a nest, and most of our large old orchards can boast of a pair of these handsome birds during the nesting season of May and June. The flicker is not above renting any house he finds vacant, excavated by some other birds last year. He earned his name of yarup or wake-up from his spring song, which is a rollicking, jolly "wick-a, wick-a, wick-a-wick" a song commonly heard the last of March or early April. The chief food of the flicker is ants, although it also eats beetles, flies and wild fruit, but does little or no damage to planted crops. So long has it fed upon ants, that its tongue has become modified, like that of the ant-eater; it is covered with a sticky substance; and when it is thrust into an ant hill, all of the little
citizens, disturbed in their communal labors, at once bravely attack the intruder and become glued fast to it, and are thus withdrawn and transferred to the capacious stomach of the bird. It has been known to eat three thousand ants at a single meal.

Those who have observed the flicker during the courting season declare him to be the most silly and vain of all bird wooers. Mr. Baskett says: "When he wishes to charm his sweetheart he mounts a small twig near her, and lifts his wings, spreads his tail, and begins to nod right and left as he exhibits his mustache to his charmer. He sets his jet locket first on one side of the twig and then on the other. He may even go so far as to turn his head half around to show her the pretty spot on his back hair. In doing all this he performs the most ludicrous antics and has the silliest expression of face and voice as if in losing his heart, as some one phrases it, he had lost his head also."

The nest hole is quite deep and the white eggs are from four to ten in number. The feeding of the young flickers is a painful process to watch. The parent takes the food into its own stomach and partially digests it, then thrusting its own bill down the throat of the young one it pumps the soft food into it "kerchug, kerchug," until it seems as if the young one must be shaken to its foundations. The young flickers as soon as they leave the nest climb around freely on the home tree in a delightful, playful manner.

Flicker coming from the nest.
Photo by George Fiske, Jr.
LESSON XVII
The Flicker

Leading thought—The flicker is a true woodpecker but has changed its habits and spends much of its time in meadows hunting for ants and other insects; it makes its nest in trees, like its relatives. It can be distinguished from the meadow-lark by the white patch above the tail which shows during flight.

Methods—This is one of the most important of birds of the meadow and the work may be done in September when there are plenty of young flickers, which have not learned to be wary. The observations may be made in the field, a few questions given at a time.

Observations—1. Where do you find the flicker in the summer and early autumn? How can you tell it from the meadow-lark in color and in flight?

2. What is it doing in the meadows? How does it manage to trap ants?

3. What is the size of the flicker as compared to the robin? What is its general color as compared to the meadow-lark?

4. Describe the colors of the flicker as follows: Top and sides of the head, back of the neck, lower back, tail, wings, throat and breast. The color and shape of the beak. Is there a difference in markings between the males and females?

5. Does the patch of white above the tail show, except when the bird is flying? Of what use is this to the bird?

6. What is the flicker’s note? At what time of spring do you hear it first?

7. Where does the flicker build its nest and how? What is the color of the eggs? How many are there?

8. How does it feed its young? How do the young flickers act?

9. How many names do you know for the flicker?

Supplementary reading—“The Bird of Many Names,” Nestlings of Forest and Marsh; A Fellow of Expedients, Long; Our Birds and Their Nestlings, p. 187; Audubon Leaflet No. 5.

The high-hole appears to drum more promiscuously than does the downy. He utters his long, loud spring call, whick-whick-whick, and then begins to rap with his beak upon his perch before the last note has reached your ear. I have seen him drum sitting upon the ridge of the barn. The log-cock, or pileated woodpecker, the largest and wildest of our Northern species, I have never heard drum. His blows should wake the echoes.

When the woodpecker is searching for food, or laying siege to some hidden grub, the sound of his hammering is deaf or muffled, and is heard but a few yards. It is only upon dry, seasoned timber, freed of its bark, that he beats his reveille to spring and woos his mate.—John Burroughs, in Birds, Bees and Sharp Eyes.
THE MEADOW-LARK

Teacher's Story

The first intimation we have in early spring, that the meadow-lark is again with us, comes to us through his soft, sweet, sad note which Van Dyke describes so graphically when he says it, "leaks slowly upward from the ground." One wonders how a bird can express happiness in these melancholy, sweet, slurred notes and yet undoubtedly it is a song expressing joy, the joy of returning home, the happiness of love and of nest building. But after one has spent a winter in the Gulf States, and has witnessed the slaughter there of this most valuable bird; and after the northern stomach and heart have turned sick at the sight of breasts once so full of song done brown on the luncheon table, one no longer wonders that the meadow-lark's song of joy is fraught with sadness. There should be national laws to protect the birds that are of value to one part of the United States from being slaughtered in their winter haunts, unless they are there a nuisance and injurious to crops, which is not the case with the meadow-lark.

The meadow-lark, as is indicated by its name, is a bird of the meadow. It is often confused with another bird of the meadow which has very different habits, the flicker. The two are approximately of the same size and color and each has a black crescent or locket on the breast and each shows the "white feather" during flight. The latter is the chief distinguishing character; the outer tail feathers of the meadow-lark are white, while the tail feathers of the flicker are not white at all, but it has a single patch of white on the rump. The flight of the two is quite different. The lark lifts itself by several sharp movements and then soars smoothly over the course, while the flicker makes a continuous up and down, wave-like flight. The songs of the two would surely never be confused, for the meadow-lark is among our sweetest singers, to which class the flicker with his "flick a flick" hardly belongs.

The colors of the meadow-lark are most harmonious shades of brown and yellow, well set off by the black locket on its breast. Its wings are light brown, each feather being streaked with black and brown; the line above the eye is yellow, bordered with black above and below; a buff line extends from the beak backward over the crown. The wings are light brown and have a mere suggestion of white bars; portions of the outer feathers on each side of the tail are white, but this white does not show except during flight. The sides of the throat are greenish, the middle part and breast are lemon-yellow, with the large, black crescent just below the throat. The beak is long, strong and black, and the meadow-lark is decidedly a low-browed bird, the forehead being only slightly higher than the upper part of the beak. It is a little larger than the robin which it rivals in plumpness.

The meadow-lark has a particular liking for meadows which border streams. It sings when on the ground, on the bush or fence and while on the wing; and it sings during the entire period of its northern stay, from April to November, except while it is moulting in late summer. Mr. Mathews, who is an eminent authority on bird songs, says that the
meadow-larks of New York have a different song from those of Vermont or Nantucket, although the music has always the same general characteristics. The western species has a longer and more complex song than ours of the East. It is one of the few California birds that is a genuine joy to the eastern visitor; during February and March its heavenly music is as pervasive as the California sunshine.

The nest is built in a depression in the ground near a tuft of grass; it is constructed of coarse grass and sticks and is lined with finer grass; there is usually a dome of grass blades woven above the nest; and often a long, covered vestibule leading to the nest is made in a similar fashion. This is evidently for protection from the keen eyes of hawks and crows. The eggs are laid about the last of May and are usually from five to seven in number; they are white, speckled with brown and purple. The young larks are usually large enough to be out of the way before haying time in July.
The food of the meadow-lark during the entire year, consists almost exclusively of insects which destroy the grass of our meadows. It eats great quantities of grasshoppers, cut worms, chinch bugs, army worms, wire worms, weevils, and also destroys some weed seeds. Each pupil should make a diagram in his note-book showing the proportions of the meadow-lark’s different kinds of food. This may be copied from Audubon Leaflet No. 3. The killing of the meadow-lark in New York State is a punishable offence, as it should be in every state of the Union. Everyone who owns a meadow should use his influence to the uttermost to protect this valuable bird. It has been estimated that the meadow-larks save to every township where hay is produced, twenty-five dollars each year on this crop alone.

The meadow-lark's covered nest.
Photo by Robert Matheson

LESSON XVIII
THE MEADOW-LARK

Leading thought—The meadow-lark is of great value in delivering the grass of our meadows from insect destroyers. It has a song which we all know; it can be identified by color as a large, light brown bird with white feathers on each side of the tail, and in flight, by its quick up and down movements finishing with long, low, smooth sailing.

Method—September and October are good months for observations on the flight, song and appearance of the meadow-lark, and also for learning
how to distinguish it from the flicker. The notes must be made by the pupils in the field, and after they know the bird and its song let them, if they have opportunity, study the bird books and bulletins, and prepare written accounts of the way the meadow-lark builds its nest and of its economic value.

Observations—1. Where have you seen the meadow-lark? Did you ever see it in the woods? Describe its flight. How can you identify it by color when it is flying? How do its white patches and its flight differ from those of the flicker? 2. Try and imitate the meadow-lark's notes by song or whistle. Does it sing while on the ground, or on a bush or fence, or during flight? 3. Note the day when you hear its last song in the fall and also its first song in the spring. Does it sing during August and September? Why? Where does it spend the winter? On what does it feed while in the South? How are our meadow-larks treated when on their southern sojourn? 4. Is the meadow-lark larger or smaller than the robin? Describe from your own observation, as far as possible, the colors of the meadow-lark as follows: Top of head; line above the eye; back; wings; tail; throat; breast; locket; color and shape of beak. Make a sketch of your own or a copy from Louis Fuertes' excellent picture of the meadow-lark in the Audubon Leaflet, and color it accurately. 5. When is the nest built; where is it placed; of what material is it built? How is it protected from sight from above? Why this protection, How many eggs? What are their colors and markings? 6. What is the food of the meadow-lark? Copy the diagram from the Audubon leaflet, showing the proportions of the different kinds of insects which it destroys. Why should the farmers of the South also protect the meadow-lark by law?

Sweet, sweet, sweet! O happy that I am!
(Listen to the meadow-larks, across the fields that sing!)
Sweet, sweet, sweet! O subtle breath of balm,
O winds that blow, O buds that grow, O rapture of the spring!

Sweet, sweet, sweet! O happy world that is!
Dear heart, I hear across the fields my mateing pipe and call.
Sweet, sweet, sweet! O world so full of bliss,
For life is love, the world is love, and love is over all!

—INA COOLBRITH.
THE ENGLISH SPARROW

Teacher's Story

So dainty in plumage and hue,
 A study in grey and in brown,
How little, how little we knew
 The pest he would prove to the town!
From dawn until daylight grows dim,
 Perpetual chatter and scold.
No winter migration for him,
 Not even afraid of the cold!
Scarce a song-bird he fails to molest,
 Belligerent, meddlesome thing!
Wherever he goes as a guest
 He is sure to remain as a King.
—Mary Isabella Forsyth.

The English sparrow, like the poor and the house-fly, is always with us; and since he is here to stay, let us make him useful if we can devise any means of doing so. There is no bird that gives the pupils a more difficult exercise in describing colors and markings than does he; and his wife is almost equally difficult. I have known fairly skilled ornithologists to be misled by some variation in color of the hen sparrow, and it is safe to assert that the majority of people "do not know her from Adam." The male has the top of the head gray with a patch of reddish brown on either side; the middle of the throat and upper breast is black; the sides of the throat white; the lower breast and under parts grayish white; the
back is brown streaked with black; the tail is brown, rather short, and not notched at the tip; the wings are brown with two white bars and a jaunty dash of reddish brown. The female has the head grayish brown, the breast, throat and under parts grayish white; the back is brown streaked with black and dirty yellow, and she is, on the whole, a "washed out" looking lady bird. The differences in color and size between the English sparrow and the chippy are quite noticeable, as the chippy is an inch shorter and far more slender in appearance, and is especially marked by the reddish brown crown.

When feeding, the English sparrows are aggressive, and their lack of table manners make them the "goops" among all birds; in the winter they settle in noisy flocks on the street to pick up the grain undigested by the horses, or in barnyards where the grain has been scattered by the cattle. They only eat weed seeds when other food fails them in the winter, for they are a civilized bird even if they do not act so, and they much prefer the cultivated grains. It is only during the nesting season that they destroy insects to any extent; over one-half the food of nestlings is insects, such as, weevils, grasshoppers, cutworms, etc.; but this good work is largely offset by the fact that these same nestlings will soon give their grown-up energies to attacking grain fields, taking the seed after sowing, later the new grain in the milk, and later still the ripened grain in the sheaf. Wheat, oats, rye, barley, corn, sorghum and rice are thus attacked. Once I saw on the upper Nile a native boat loaded with millet which was attacked by thousands of sparrows; when driven off by the sailors they would perch on the rigging, like flies, and as soon as the men turned their backs they would drop like bullets to the deck and gobble the grain before they were again driven off. English sparrows also destroy for us the buds and blossoms of fruit trees and often attack the ripening fruit.

The introduction of the English sparrow into America is one of the greatest arguments possible in favor of nature-study; for, ignorance of nature-study methods in this single instance, costs the United States millions of dollars every year. The English sparrow is the European house sparrow and people had a theory that it was an insect eater, but never took the pains to ascertain if this theory were a fact. About 1850, some people with more zeal than wisdom introduced these birds into New York, and for twenty years afterwards there were other importations of the sparrows. In twenty years more, people discovered that they had taken great pains to establish in our country one of the worst nuisances in all Europe. In addition to all the direct damage which the English sparrows do, they are so quarrelsome that they have driven away many of our native beneficial birds from our premises, and now vociferously acclaim their presence in places which were once the haunts of birds with sweet songs. After they drive off the other birds they quarrel among themselves, and there is no rest for tired ears in their vicinity. There are various noises made by these birds which we can understand if we are willing to take the pains: The harassing chirping is their song; they squall when frightened and peep plaintively when lonesome, and make a disagreeable racket when fighting.

But to "give the devil his due" we must admit that the house sparrow is as clever as it is obnoxious, and its success is doubtless partly due to its superior cleverness and keenness. It is quick to take a hint, if sufficiently
pointed; firing a shotgun twice into a flock of these birds has driven them from our premises; and tearing down their nests assiduously for a month seems to convey to them the idea that they are not welcome. Another instance of their cleverness I witnessed one day; I was watching a robin, worn and nervous with her second brood, fervently hunting earthworms in the lawn to fill the gaping mouths in the nest in the Virginia creeper shading the piazza. She finally pulled up a large, pink worm and a hen sparrow flew at her viciously; the robin dropped the worm to protect herself, and the sparrow snatched it and carried it off triumphantly to the grape arbor where she had a nest of her own full of gaping mouths. She soon came back, and at a safe distance watched the robin pull out another worm, and by the same tactics again gained the squirming prize. Three times was this repeated in an hour, and then the robin, discouraged, flew up into a Norway spruce and in a monologue of sullen cluckings tried to reason out what had happened.

The English sparrow’s nest is quite in keeping with the bird’s other qualities; it is usually built in a hole or box or in some protected corner beneath the eaves; it is also often built in vines on buildings and occasionally in trees. It is a good example of “fuss and feathers”; coarse straw, or any other kind of material, and feathers of hens or of other birds, mixed together without fashion or form, constitute the nest. In these sprawling nests the whitish, brown or gray-flecked eggs are laid and the young reared; and so far as I can ascertain, no one has ever counted the number of broods reared in one season. The nesting begins almost as soon as the snow is off the ground and lasts until late fall.

During the winter, the sparrows gather in flocks in villages and cities, but in the spring they scatter out through the country where they can find more grain. The only place where this bird is welcome is possibly in the heart of a great city, where no other bird could pick up a livelihood. It is a true cosmopolite and is the first bird to greet the traveler in Europe or northern Africa. These sparrows will not build in boxes suspended by a wire; and they do not like a box where there is no resting place in front of the door leading to the nest.

After the pupils have made observations upon the habits of the house sparrow, they may find, in the following books and bulletins, facts which will teach further the economic importance of this bird: Birds in Their Relation to Man, by Weed and Dearborn, p. 144. The following bulletins of the U. S. Department of Agriculture: “English Sparrow in North America;” “Relation of Sparrows to Agriculture,” S. D. Judd, Bulletin 15; “The Food of Nestlings,” Yearbook 1900.

LESSON XIX

The English Sparrow

Leading thought—The English sparrow was introduced into America by people who knew nothing of its habits. It has finally over-run our whole country and, to a great extent, has driven out from towns and villages our useful American song birds and it should be discouraged and not allowed to nest around our houses and grounds. As a sparrow it has interesting habits which we should observe.

Methods—Let the pupils make their observations in the street or wherever they find the birds. The greatest value of this lesson is to teach
the pupils to observe the coloring and markings of a bird accurately and describe them clearly. This is the best of training for later work with the wild birds.

Observations—1. How many kinds of birds do you find in a flock of English sparrows?

2. The ones with the black cravat are naturally the men of the family, while their sisters, wives and mothers are less ornamented. Describe in your note-book or from memory the colors of the cock sparrow as follows: Top of head; sides of the head; the back; the tail; the wings; wing bars; throat and upper breast; lower breast and under parts.

3. Describe the hen sparrow in the same manner and note the difference in markings between the two. Are the young birds, when they first fly, like the father or the mother?

4. Compare the English sparrow with the chippy and describe the differences in size and color.

5. Is the tail when the bird is not flying, square across the end or notched?

6. What is the shape of the beak? For what sort of food is this shaped beak meant?

7. What is the food of the English sparrows and where do they find it? Describe the actions of a flock feeding in the yard or street. Are the English sparrows kindly or quarrelsome in disposition?

8. Why do the English sparrows stay in the North during the coldest of winters? Do they winter out in the country or in villages?

9. Describe by observation how they try to drive away the robins or other native birds.

10. Describe the nest of this sparrow. Of what material is it made? How is it supported? How sheltered? Is it a well-built nest?

11. Describe the eggs? How many broods are raised a year? What kind of food do the parents give the nestlings?

12. If you have ever seen these sparrows do anything interesting describe the circumstance?

13. In what ways are these birds a nuisance to us?

14. How much of English sparrow talk do you understand?

15. How can we build bird-boxes so that the English sparrows will not try to take possession of them?

Do not tire the child with questions; lead him to question you, instead. Be sure, in any case, that he is more interested in the subject than in the questions about the subject.
THE CHIPPING SPARROW

Teacher's Story

HIS midget lives in our midst, and yet, not among all bird kind, is there one which so ignores us as does the chippy. It builds its nest about our houses, it hunts for food all over our premises, it sings like a tuneful grasshopper in our ears, it brings up its young to disregard us, and every hour of the day it "tsip-tsips" us to scorn. And, although it has well earned the name of "doorstep sparrow," since it frugally gathers the crumbs about our kitchen doors, yet it rarely becomes tame or can be induced to eat from the hand, unless it is trained so to do as a nestling.

Its cinnamon-brown cap and tiny black forehead, the gray streak over the eye and the black through it, the gray cheeks and the pale gray, unspotted breast distinguish it from the other sparrows, although its brown back streaked with darker, and brown wings and blackish tail have a very sparrowish look; the two whitish wing bars are not striking; it has a bill fitted for shelling seeds, a characteristic of all the sparrows. Despite its seed-eating bill, the chippy's food is thirty-eight per-cent insects, and everyone should read what Mr. Forbush says about the good work this little bird does in our gardens and to our trees. It takes in large numbers cabbage caterpillars, the pea louse, the beet leaf-miners, leaf hoppers, grasshoppers, cut worms, and does its best to annihilate the caterpillars of the terrible gypsy and browntail moths. In fact, it works for our benefit even in its vegetable food, as this consists largely of the seeds of weeds and undesirable grasses. It will often fly up from its perch after flies or moths, like a flycatcher; and the next time we note it, it will be hopping around hunting for the crumbs we have scattered for it on the piazza floor. The song of the chippy is more interesting to it than to us; it is a continuous performance of high, shrill, rapid notes, all alike so far as I can detect; when it utters many of these in rapid succession it is singing, but when it gives them singly they are call notes or mere conversation.

One peculiarity of the nest has given this sparrow the common name of hair-bird, for the lining is almost always of long, coarse hair, usually treasure trove from the tails of horses or cattle switched off against boards, burs or other obstacles. Of the many nests I have examined, black horsehair was the usual lining; but two nests in our yard show the chippy to be a resourceful bird; evidently the hair market was exhausted and the soft, dead needles of the white pine were used instead and made a most satisfactory lining. The nest is tiny and shallow; the outside is of fine grass or rootlets carefully but not closely woven together; it is placed in vine or tree, usually not more than ten or fifteen feet from the ground; a vine of a piazza is a favorite nesting site. Once a bold pair built directly above the entrance to our front door and mingled cheerfully with other visitors. Usually, however, the nest is so hidden that it is not discovered until after the leaves have fallen. The eggs are light blue tinged with green, with fine, purplish brown specks or markings scrawled about the larger end.
The chippy comes to us in April and usually raises two broods of from three to five "piggish" youngsters, which even after they are fully grown follow pertinaciously their tired and "frazzled out" parents and beg to be fed; the chippy parents evidently have no idea of discipline but indulge their teasing progeny until our patience, at least, is exhausted. The young differ from the parents in having streaked breasts and lacking the reddish crown. In the fall the chippy parents lose their red-brown caps and have streaked ones instead; and then they fare forth in flocks for a seed-harvest in the fields. Thereafter our chippy is a stranger to us; we do not know it in its new garb, and it dodges into the bushes as we pass, as if it had not tested our harmlessness on our own door-stone.

Reference—Wild Life, Ingersol, p. 132.

LESSON XX

Leading thought—The chipping sparrow is a cheerful and useful little neighbor. It builds a nest, lined with horsehair, in the shrubbery and vines about our homes and works hard in ridding our gardens of insect pests and seeds of weeds.

Methods—Begin this lesson with a nest of the chippy, which is so unmistakable that it may be identified when found in the winter. Make the study of this nest so interesting that the pupils will wait anxiously to watch for the birds which made it. As soon as the chippies appear, the questions should be asked, a few at a time, giving the children several weeks for the study.

The Nest

Observations—1. Where was this nest found? How high from the ground?
2. Was it under shelter? How was it supported?
3. Of what material is the outside of the nest? How is it fastened together? How do you suppose the bird wove this material together?
4. Of what material is the lining? Why is the bird that built this nest called the "hair bird?" From what animal do you think the lining of the nest came? How do you suppose the bird got it?
5. Do you think the nest was well hidden when the leaves were about it? Measure the nest across and also its depth; do you think the bird that made it is as large as the English sparrow?

The Bird

6. How can you tell the chippy from the English sparrow?
7. Describe in your note-book or orally the colors of the chippy as follows: beak, forehead, crown, marks above and through the eyes,
cheeks, throat, breast, wings and tail. Note if the wings have whitish bars and how many.
8. Describe the shape of the beak as compared with that of the robin. What is this shaped bill meant for?
9. What is the food of the chippy? Why has it been called the doorstep-sparrow?
10. Note if the chippy catches flies or moths on the wing like the phœbe-bird.
11. Why should we protect the chippy and try to induce it to live near our gardens?
12. Does it run or hop when seeking food on the ground?
13. How early in the season does the chippy appear and where does it spend the winter?
14. Can you describe the chippy’s song? How do you think it won the name of chipping sparrow?
15. If you have the luck to find a pair of chippies nesting, keep a diary of your observations in your note-book covering the following points: Do both parents build the nest? How is the frame-work laid? How is the finishing done? The number and color of the eggs? Do both parents feed the young? How do young chippies act when they first leave the nest? How large are the young birds before the parents stop feeding them? What are the differences in color and markings between parents and young?

THE FIELD-SPARROW
A bubble of music floats, the slope of the hillside over;
A little wandering sparrow’s notes; and the bloom of yarrow and clover,
And the smell of sweet-fern and the bayberry leaf, on his ripple of song are stealing.
For he is a cheerful thief, the wealth of the fields revealing.

One syllable, clear and soft as a raindrop’s silvery patter,
Or a tinkling fairy-bell; heard aloft, in the midst of the merry chatter
Of robin and linnet and wren and jay, one syllable, oft repeated;
He has but a word to say, and of that he will not be cheated.

The singer I have not seen; but the song I arise and follow
The brown hills over, the pastures green, and into the sunlit hollow.
With a joy that his life unto mine has lent, I can feel my glad eyes glisten,
Though he hides in his happy tent, while I stand outside, and listen.

This way would I also sing, my dear little hillside neighbor!
A tender carol of peace to bring to the sunburnt fields of labor
Is better than making a loud ado, trill on, amid clover and yarrow!
There’s a heart-beat echoing you, and blessing you, blithe little sparrow!

—Lucy Larcom
THE SONG SPARROW

Teachers' Story

"He does not wear a Joseph's coat of many colors, smart and gay
His suit is Quaker brown and gray, with darker patches at his throat.
And yet of all the well-dressed throng, not one can sing so brave a song.
It makes the pride of looks appear, a vain and foolish thing to hear
His "Sweet, sweet, sweet, very merry cheer."

A lofty place he does not love, he sits by choice and well at ease
In hedges and in little trees, that stretch their slender arms above
The meadow brook; and then he sings till all the field with pleasure rings;
And so he tells in every ear, that lowly homes to heaven are near
In 'Sweet, sweet, sweet, very merry cheer.'"

—Henry Van Dyke.

Children should commit to memory the poem from which the above stanzas were taken; seldom in literature, have detailed accurate observation and poetry been so happily combined as in these verses. The lesson might begin in March when we are all listening eagerly for bird voices, and the children should be asked to look out for a little, brown bird which sings, "Sweet, sweet, sweet, very merry cheer," or, as Thoreau interprets it, "Maids! Maids! Maids! Hang on the teakettle, teakettle-ettle-ettle." In early childhood I learned to distinguish this sparrow by its "Teakettle" song. Besides this song, it has others quite as sweet; and when alarmed it utters a sharp "T'chink, t'chink."

The song sparrow prefers the neighborhood of brooks and ponds which are bordered with bushes, and also the hedges planted by nature along rail or other field fences, and it has a special liking for the shrubbery about gardens. Its movements and flight are very characteristic; it usually sits on the tip-top of a shrub or low tree when it sings, but when disturbed
never rises in the air but drops into a low flight and plunges into a thicket with a defiant twitch of the tail which says plainly, "find me if you can."

The color and markings of this bird are typical of the sparrows. The head is a warm brown with a gray streak along the center of the crown and one above each eye, with a dark line through the eye. The back is brown with darker streaks. The throat is white with a dark spot on either side; the breast is white spotted with brown with a large, dark blotch at its very center; this breast blotch distinguishes this bird from all other sparrows. The tail and wings are brown and without buff or white bars or other markings. The tail is long, rounded and very expressive of emotions, and makes the bird look more slender than the English sparrow.

The nest is usually placed on the ground or in low bushes not more than five feet from the ground; it varies much in both size and material; it is sometimes constructed of coarse weeds and grasses; and sometimes only fine grass is used. Sometimes it is lined with hair, and again, with fine grass; sometimes it is deep, but occasionally is shallow. The eggs have a whitish ground-color tinged with blue or green, but are so blotched and marked with brown that they are safe from observation of enemies. The nesting season begins in May, and there are usually three and sometimes four broods; but so far as I have observed, a nest is never used for two consecutive broods. The song sparrow stays with us in New York State very late in the fall, and a few stay in sheltered places all winter. The quality in this bird which endears him to us all is the spirit of song which stays with him; his sweet trill may be heard almost any month of the year, and he has a charming habit of singing in his dreams, if sudden noise disturbs his slumber.

The song sparrow is not only the dearest of little neighbors, but it also works lustily for our good and for its own food at the same time. It destroys cutworms, plant-lice, caterpillars, canker-worms, ground beetles, grasshoppers and flies; in winter it destroys thousands of weed seeds, which otherwise would surely plant themselves to our undoing. Every boy and girl should take great pains to drive away stray cats and to teach the family puss not to meddle with birds; for cats are the worst of all the song sparrow's enemies, destroying thousands of its nestlings every year.

LESSON XXI

THE SONG SPARROW

Leading thought—The beautiful song of this sparrow is heard earlier in the spring than the notes of bluebird or robin. The dark blotch in the center of its speckled breast distinguishes this sparrow from all others; it is very beneficent and should be protected from cats.

Methods—All the observations of the song sparrow must be made in the field, and they are easily made because the bird builds near houses, in gardens, and in the shrubbery. Poetry and other literature about the song sparrow should be given to the pupils to read or to memorize.

Observations—1. Have you noticed a little brown bird singing a very sweet song in the early spring? Did the song sound as if set to the words "Little Maid! Little Maid! Little Maid! Put on the teakettle, teakettle-ettle ettle?"
2. Where was this bird when you heard him singing? How high was he perched above the ground? What other notes did you hear him utter?
3. Describe the colors and markings of the song sparrow on head, back, throat, breast, wings and tail. Is this bird as large as the English sparrow? What makes it look more slim?
4. How can you distinguish the song sparrow from the other sparrows? When disturbed does it fly up or down? How does it gesture with its tail as it disappears in the bushes?
5. Where and of what material does the song sparrow build its nest?
6. What colors and markings are on the eggs? Do you think these colors and markings are useful in concealing the eggs when the mother bird leaves the nest?
7. How late in the season do you see the song sparrows and hear their songs? Does this bird, when disturbed, fly up or down?
8. How can we protect these charming little birds and induce them to build near our houses?
9. What is the food of the song sparrows and how do they benefit our fields and gardens?

Supplementary reading—Our Birds and Their Nestlings, Walker, pp. 43, 49, 50, 52; Second Book of Birds, Miller, p. 80; Birds of Song and Story, Grinnell, p. 73; The Song Sparrow, Van Dyke; Birds Through an Opera Glass, Merriam, p. 66; Field Book of Wild Birds, Mathews, p. 109; Wild Life, Ingersoll, p. 144; Audubon Leaflet No. 31.

THE SING-AWAY BIRD

Have you ever heard of the Sing-away bird,
That sings where the Runaway River
Runs down with its rills from the bald-headed hills
That stand in the sunshine and shiver?
"Oh, sing! sing-away! sing-away!"
How the pines and the birches are stirred
By the trill of the Sing-away bird!

And the bald-headed hills, with their rocks and their rills,
To the tune of his rapture are ringing;
And their faces grow young, all the gray mists among,
While the forests break forth into singing.
"Oh sing! sing-away! sing-away!"
And the river runs singing along;
And the flying winds catch up the song.

’T was a white-throated sparrow, that sped a light arrow
Of song from his musical quiver,
And it pierced with its spell every valley and dell
On the banks of the Runaway River.
"Oh, sing! sing-away! sing-away!"
The song of the wild singer had
The sound of a soul that is glad.—Lucy Larcom.
Among all the vocalists in the bird world, the mockingbird is unrivaled in the variety and richness of his repertoire; and he has thus won his place among men, convincing many ignorant people by the means of his voice that a bird is good for something besides “victuals.” The mockingbirds go as far north as southern New England, but they are found at their best in the Southern States and in California. On the Gulf Coast the mockers begin singing in February; in warmer climates they sing almost the year through. During the nesting season, the father mocker is so busy with his cares and duties during the day, that he does not have time to sing and so devotes the nights to serenading; he may sing almost all night long if there is moonlight, but even on dark nights he gives now and then a happy, sleepy song. Not all mockingbirds are mockers; some sing their own song which is rich and beautiful; while others learn in addition, not only the songs of other birds, but their call notes as well. One authority noted a mocker which imitated the songs of twenty species of birds during a ten-minute performance. When singing, the mocker shows his relationship to the brown thrasher by lifting the head
and depressing and jerking the tail. A good mocker will learn a tune, or parts of it, if it is whistled often enough in his hearing; he will also imitate other sounds and will often improve on a song he has learned from another bird by introducing frills of his own; when learning a song, he sits silent and listens intently, but will not try to sing it until it is learned.

Although the mockingbirds live in wild places, they prefer the haunts of men, taking up their home sites in gardens and cultivated grounds. Their flight is rarely higher than the tree tops and is decidedly jerky in character with much twitching of the long tail. For nesting sites, they choose thickets or the lower branches of trees, being especially fond of orange trees; the nest is usually from four to twenty feet from the ground. The foundation of the nest is made of sticks, grasses and weed stalks interlaced and crisscrossed; on these is built the nest of softer materials, such as, rootlets, horschair, cotton, or in fact, anything suitable which is at hand. The nest is often in plain sight, since the mocker trusts to his strength as a fighter to protect it. He will attack cats with great ferocity and vanquish them; he will kill snakes; often good-sized black snakes have been known to end thus. The mocker, in making his attack, hovers above his enemy and strikes it at the back of the head or neck; he will also drive away birds much larger than himself.

The female lays from four to six pale greenish or bluish eggs blotched with brown and which hatch in about two weeks; then comes a period of hard work for the parents, as both are indefatigable in catching insects to feed the young. The mocker, by the way, is a funny sight when he is chasing a beetle on the ground, lifting his wings in a pugnacious fashion. The mockers often raise three broods a season; the young birds have spotted breasts, showing their relationship to the thrasher.

As a wooer, the mocker is a bird of much ceremony and dances into his lady’s graces. Mrs. F. W. Rowe, in describing this, says that the birds stand facing each other with heads and tails erect and wings drooping; “then the dance would begin, and this consisted of the two hopping sideways in the same direction and in rather a straight line a few inches at a time, always keeping directly opposite each other and about the same distance apart. They would chasses this way four or five feet, then go back over the same line in the same manner.” Mrs. Rowe also observed that the male mockers have hunting preserves of their own, not allowing any other males of their species in these precincts. The boundary was sustained by tactics of both offense and defense; but certain other species of birds were allowed to trespass without reproof.

Maurice Thompson describes in a delightful manner the “mounting” and “dropping” songs of the mocker which occur during the wooing season. The singer flits up from branch to branch of a tree, singing as he goes, and finally on the topmost bough gives his song of triumph to the world; then, reversing the process, he falls backward from spray to spray, as if drunk with the ecstasy of his own song, which is an exquisitely soft “gurgling series of notes, liquid and sweet, that seem to express utter rapture.”

The mockingbirds have the same colors in both sexes; the head is black, the back is ashy-gray; the tail and wings are so dark brown that they look black; the tail is very long and has the outer tail feathers entirely white and the two next inner ones are white for more than half their length; the wings have a strikingly broad, white bar, which is very
noticeable when the bird is flying. The under parts and breast are grayish white; the beak and legs are blackish. The food of the mockingbirds is about half insects and half fruit. They live largely on the berries of the red cedar, myrtle and holly, and we must confess are often too devoted to the fruits in our orchards and gardens; but let us put down to their credit that they do their best to exterminate the cotton boll caterpillars and moths, and also many other insects injurious to crops.

The mocker is full of tricks and is distinctly a bird of humor. He will frighten other birds by screaming like a hawk and then seem to chuckle over the joke.

Sidney Lanier describes him well.

Whate’er birds did or dreamed, this bird could say,
Then down he shot, bounced airily along
The sword, twitched in a grasshopper, made song
Midflight, perched, prinked, and to his art again.

LESSON XXII

The Mocking Bird

Leading thought—The mockingbird is the only one of our common birds that sings regularly at night. It imitates the songs of other birds and has also a beautiful song of its own. When feeding their nestlings, the mockers do us great service by destroying insect pests.

Method—Studies of this bird are best made individually by the pupils through watching the mockers which haunt the houses and shrubbery. If there are mockingbirds near the schoolhouse the work can be done in the most ideal way by keeping records in the school of all the observations made by the pupils, thus bringing out an interesting mockingbird story. The experiment in teaching songs to the birds may best be made with pet mockers.

Observations—1. At what months of the year and for how many months does the mockingbird sing in this locality?
2. Does he sing only on moonlight nights? Does he sing all night?
3. Can you distinguish the true mockingbird song from the songs which he has learned from other birds? Describe the actions of a mocker when he is singing.
4. How many songs of other birds have you heard a mocker give and what are the names of these birds?
5. Have you ever taught a mocker a tune by whistling it in his presence? If so, tell how long before he learned it and how he acted while learning.
 Describe the flight of the mockingbirds. Do they fly high in the air like crows?
7. Do these birds like best to live in wild places or about houses and gardens?
8. Where do they choose sites for their nests? Do they make an effort to hide the nest? If not, why?
9. Of what material is the nest made? How is it lined? How far from the ground is it placed?
10. What are the colors of the eggs? How many are usually laid? How long before they hatch?
11. Give instances of the parents' devotion to the young birds.
12. Have you seen two mockingbirds dancing before each other just before the nesting season?
13. In the spring have you heard a mocker sing while mounting from the lower to the upper branches of a tree and then after pouring forth his best song fall backward with a sweet, gurgling song as if intoxicated with his music?
14. How many broods does a pair of mockers raise during one season? How does the color of the breast of the young differ from that of the parent?
15. How does the father bird protect the nestlings from other birds, cats and snakes?
16. Does the mocker select certain places for his own hunting grounds and drive off other mockers which trespass?
17. Describe the colors of the mockingbird as follows: Beak, head, back, tail, wings, throat, breast, under parts and feet.
18. What is the natural food of the mockingbirds and how do they benefit the farmer? How does the mocker act when attacking a ground beetle?
19. Have you seen mockingbirds frighten other birds by imitating the cry of a hawk? Have you seen them play other kinds of tricks?
20. Write a little story which shall include your own observations on the ways of pet mockingbirds which you have known.

Supplementary reading—True Bird Stories, Miller, p. 142; Bob, by Sidney Lanier; Second Book of Birds, Miller, p. 34; Birds of Song and Story, Grinnell, p. 29; Stories About Birds, Kirby, p. 94.

“Soft and low the song began: I scarcely caught it as it ran
Through the melancholy trill of the plaintive whip-poor-will,
Through the ringdove's gentle wail, chattering jay and whistling quail,
Sparrow's twitter, catbird's cry, redbird's whistle, robin's sigh;
Blackbird, bluebird, swallow, lark, each his native note might mark.

Oft he tried the lesson o'er, each time louder than before;
Burst at length the finished song, loud and clear it poured along;
All the choir in silence heard, hushed before this wondrous bird.
All transported and amazed, scarcely breathing, long I gazed.
Now it reached the loudest swell; lower, lower, now it fell,—
Lower, lower, lower still, scarce it sounded o'er the rill.”

—JOSEPH RODMAN DRAKE.
THE CATBIRD

Teacher's Story

"The Catbird sings a crooked song, in minors that are flat,
And, when he can't control his voice he mews just like a cat,
Then nods his head and whisks his tail and lets it go at that."

—Oliver Davie.

As a performer, the catbird distinctly belongs to the vaudeville, even going so far as to appear in slate-colored tights. His specialties range from the most exquisite song to the most strident of scolding notes; his nasal "n-y-a-a-h, n-y-a-a-h" is not so very much like the cat's mew after all, but when addressed to the intruder it means "get out;" and not in the whole gamut of bird notes is there another which so quickly inspires the listener with this desire. I once trespassed upon the territory of a well-grown catbird family and the squalling that ensued was ear-splitting; as I retreated, the triumphant youngsters followed me for a few rods with every sign of triumph in their actions and voices; they obviously enjoyed my apparent fright. The catbirds have rather a pleasant "cluck, cluck" when talking to each other, hidden in the bushes, and they also have a variety of other notes. The true song of the catbird, usually given in the early morning, is very beautiful. Mr. Mathews thinks it is a medley gathered from other birds, but it seems to me very individual. However, true to his vaudeville training, this bird is likely to introduce into the middle or at the end of his exquisite song some phrase that suggests his cat call. He is, without doubt, a true mocker and will often imitate the robin's song, and also if opportunity offers learns to converse fluently in chicken language. One spring morning, I heard outside my window
the mellow song of the cardinal, which is a rare visitor in New York, but there was no mistaking the “tor-re-do, tor-re-do.” I sprang from my bed and rushed to the window only to see a catbird singing the cardinal song, and thus telling me that he had come from the sunny South and the happy companionship of these brilliant birds. Often when the catbird is singing, he sits on the topmost spray of some shrub lifting his head and depressing his tail, like a brown thrasher; and again, he sings completely hidden in the thicket.

In appearance the catbird is tailor-made, belonging to the same social class as the cedar-bird and the barn swallow. However, it affects quiet colors, and its well-fitting costume is all slate-gray except the top of the head and the tail which are black; the feathers beneath the base of the tail are brownish. The catbird is not so large as the robin, and is of very different shape; it is far more slender and has a long, emotional tail. The way the catbird twitches and tilts its tail, as it hops along the ground or alights in a bush, is very characteristic. It is a particularly alert and nervous bird, always on the watch for intruders, and the first to give warning to all other birds of their approach. It is a good fighter in defending its nest, and there are several observed instances where it has fought to defend the nest of other species of birds; and it has gone even further in its philanthropy, by feeding their orphaned nestlings.

The catbird chooses a nesting site in a low tree or shrub or brier, where the nest is built usually about four feet from the ground. The nest looks untidy, but is strongly made of sticks, coarse grass, weeds, bark strips and occasionally paper; it is lined with soft roots and is almost always well hidden in dense foliage. The eggs are from three to five in number and are dark greenish blue. Both parents work hard feeding the young and for this purpose destroy many insects which we can well spare. Sixty-two per cent. of the food of the young has been found in one instance to be cutworms, showing what a splendid work the parents do in our gardens. In fact, during a large part of the summer, while these birds are rearing their two broods, they benefit us greatly by destroying the insect pests; and although later they may attack our fruits and berries, it almost seems as if they had earned the right to their share. If we only had the wisdom to plant along the fences some elderberries or Russian mulberries, the catbirds as well as the robins would feed upon them instead of the cultivated fruits.

The catbirds afford a striking example for impressing upon children that each species of birds haunts certain kinds of places. The catbirds are never found in deep woods nor in open fields, but always near low thickets along streams, and in shrubbery along fences, in tangles of vines, and especially do they like to build about our gardens, if we protect them. They are very fond of bathing, and if fresh water is given them for this purpose, we may have opportunity to witness the most thorough bath a bird can take. A catbird takes a long time to bathe and preen its feathers and indulges in most luxurious sun baths and thus deservedly earns the epithet of “well-groomed;” it is one of the most intelligent of all our birds and soon learns “what is what,” and repays in the most surprising way the trouble of careful observation.
LESSON XXIII

The Catbird

Leading thought—The catbird has a beautiful song as well as the harsh “miou,” and can imitate other birds, although not so well as the mockingbird. It builds in low thickets and shrubbery and during the nesting season is of great benefit to our gardens.

Methods—First, let the pupils study and report upon the songs, scoldings and other notes of this our northern mockingbird; then let them describe its appearance and habits. Of course, the study must be made outside of school hours in the field.

Observations—1. Do you think the squall of the catbird sounds like the mew of a cat? When does the bird use this note and what for? What other notes have you heard it utter?

2. Describe as well as you can the catbird’s true song. Are there any harsh notes in it? Where does he sit while singing? Describe his actions while singing.

3. Have you ever heard the catbird imitate the songs of other birds or other noises?

4. Describe the catbird as follows: its size and shape compared to the robin; the color and shape of head, beak, wings, tail, breast and under parts.

5. Describe its peculiar actions and its characteristic movements.

6. Where do catbirds build their nests? How high from the ground? What material is used? Is the nest compact and carefully finished? Is it hidden?

7. What is the color of the eggs? Do both parents care for the young?

8. What is the food of the catbird? Why is it an advantage to us to have catbirds build in our gardens?

9. Do you ever find catbirds in the deep woods or out in the open meadows? Where do you find them?

10. Put out a pan of water where the catbirds can use it and then watch them make their toilets and describe the process. Describe how they take sun baths.

“He sits on a branch of you blossoming bush,
This madcap cousin of robin and thrush,
And sings without ceasing the whole morning long;
Now wild, now tender, the wayward song
That flows from his soft, gray, fluttering throat;
But often he stops in his sweetest note,
And, shaking a flower from the blossoming bough,
Draws out, “Mi-eu, mi-ow”"

—“The Catbird”, Edith M Thomas.
THE BELTED KINGFISHER

Teacher's Story

HIS patrol of our streams and lake shores, in his cadet uniform, is indeed a military figure as well as a militant personality. As he sits upon his chosen branch overhanging some stream or lake shore, his crest abristle, his keen eye fixed on the water below, his whole bearing alert, one must acknowledge that this fellow puts "ginger" into his environment, and that the spirit which animates him is very far from the "dolce far niente" which permeates the ordinary fisherman. However, he does not fish for fun but for business; his keen eye catches the gleam of a moving fin and he darts from his perch, holds himself for a moment on steady wings above the surface of the water, to be sure of his quarry, and then there is a dash and a splash and he returns to his perch with the wriggling fish in his strong beak; he at once proceeds to beat its life out against a branch and then to swallow it sensibly, head first, so that the fins will not prick his throat nor the scales rasp it. He swallows the entire fish, trusting to his internal organs to select the nourishing part; and later he gulps up a ball of the indigestible scales and bones.

The kingfisher is very different in form from an ordinary bird; he is larger than a robin, and his head and fore parts are much larger in proportion; this is the more noticeable because of the long feathers of the head which he lifts into a crest, and because of the shortness of the tail. The beak is very long and strong in order to seize the fish and hold it fast; but the legs are short and weak; the third and fourth toes are grown together for a part of their length; perhaps this is of use to the bird in pushing earth from the burrow, when excavating. The kingfisher has no need for running and hopping, like the robin and, therefore, does not need the robin's strong legs and feet. His colors are beautiful and harmonious; the upper parts are grayish blue, the throat and collar white, as is also the breast, which has a bluish gray band across the upper part, this giving the name of the Belted Kingfisher to the bird. The feathers of the wings are tipped with white and the tail feathers narrowly barred with white. The under side of the body is white in the males, while in the females it is somewhat chestnut in color. There is a striking white spot just in front of the eye.

The kingfisher parents build their nest in a burrow which they tunnel horizontally in a bank; sometimes there is a vestibule of several feet before the nest is reached, and at other times it is built very close to the opening. Both parents are industrious in catching fish for their nestlings, but the burden of this duty falls heaviest upon the male. Many fish bones are found in the nest, and they seem so clean and white that they have been regarded as nest lining. Wonderful tales are told of the way the English kingfishers use fish bones to support the earth above their nests, and tributes have been paid to their architectural skill. But it is generally conceded that the lining of fish bones in nests of our kingfisher is incidental, since the food of the young is largely fish, although frogs,
insects and other creatures are often eaten with relish. It is interesting to note the process by which the young kingfisher gets its skill in fishing. I have often seen one dive horizontally for a yard or two beneath the water and come up indignant and sputtering because the fish had escaped. It was fully two weeks after this before this one learned to drop like a bullet on its quarry.

The note of the kingfisher is a loud rattle, not especially pleasant close at hand, but not unmusical at a little distance. It is a curious coincidence that it sounds very much like the clicking of the fisherman's reel; it is a sound that conjures visions of shade-dappled streams and the dancing, blue waters of tree-fringed lakes and ponds.

There seems to be a division of fishing ground among the kingfishers, one bird never trespassing upon its neighbor's preserves. Unless it be the parent pair working near each other for the nestlings, or the nestlings still under their care, we never see two kingfishers in the same immediate locality.

References—The Bird, p. 97; The Bird Book, pp. 154, 444.

LESSON XXIV

The Kingfisher

Leading thought—The kingfisher is fitted by form of body and beak to be a fisherman.

Methods—If the school be near a stream or pond the following observations may be made by the pupils; otherwise let the boys who go fishing make a study of the bird and report to the school.

Observations—1. Where have you seen the kingfisher? Have you often seen it on a certain branch which is its favorite perch? Is this perch near the water? What is the advantage of this position to the bird?

2. What does the kingfisher feed upon? How does it obtain its food? Describe the actions of one of these birds while fishing.

3. With what weapon does the kingfisher secure the fish? How long is its beak compared with the rest of its body? How does it kill the fish? Does it swallow the fish head or tail first? Why? Does it tear off the scales or fins before swallowing it? How does it get rid of these and the bones of the fish?

4. Which is the larger, the kingfisher or the robin? Describe the difference in shape of the bodies of these two birds; also in the size and shape of feet and beaks and explain why they are so different in form. What is there peculiar about the kingfisher's feet? Do you know which two toes are grown together?

5. What are the colors of the kingfisher in general? The colors of head, sides of head, collar, back, tail, wings, throat, breast, and under parts? Is there a white spot near the eye? If so, where? Do you know the difference in colors between the parent birds?

6. Where is the nest built? How is it lined?
7. What is the note of the kingfisher? Does it give it while perching or while on the wing? Do you ever find more than one kingfisher on the same fishing grounds?

THE KINGFISHER (OF ENGLAND)

_For the handsome Kingfisher, go not to the tree,
No bird of the field or the forest is he;
In the dry river rock he did never abide,
And not on the brown heath all barren and wide._

_He lives where the fresh, sparkling waters are flowing,
Where the tall heavy Typha and Loosestrife are growing;
By the bright little streams that all joyfully run
Awhile in the shadow, and then in the sun._

_He lives in a hole that is quite to his mind,
With the green mossy Hazel roots firmly entwined;
Where the dark Alder-bough waves gracefully o’er,
And the Sword-flag and Arrow-head grow at his door._

_There busily, busily, all the day long,
He seeks for small fishes the shallows among;
For he builds his nest of the pearly fish-bone,
Deep, deep, in the bank, far retired, and alone._

_Then the brown Water-Rat from his burrow looks out,
To see what his neighbor Kingfisher’s about;
And the green Dragon-fly, flitting slowly away,
Just pauses one moment to bid him good-day._

_O happy Kingfisher! What care should he know,
By the clear, pleasant streams, as he skims to and fro,
Now lost in the shadow, now bright in the sheen
Of the hot summer sun, glancing scarlet and green!_

—Mary Howitt.
THE SCREECH OWL

Teacher's Story

"Disquiet yourselves not. 'Tis nothing but a little, downy owl."—Shelley.

Of all the fascinating sounds to be heard at night in the woods, the screech owl's song is surely the most so; its fascination does not depend on music but upon the chills which it sends up and down the spine of the listener, thus attacking a quite different set of nerves than do other bird songs. The weird wail, tremulous and long drawn out, although so blood-curdling, is from the standpoint of the owlet the most beautiful music in the world; by means of it he calls to his mate, cheering her with the assurance of his presence in the world; evidently she is not a nervous creature. The screech owls are likely to sing at night during any part of the year; nor should we infer that when they are singing they are not hunting, for perchance their music frightens their victims into fatal activity. Although the note is so unmistakable, yet there is great variation in the songs of individuals; the great variety of quavers in the song offering ample opportunity for the expression of individuality. Moreover, these owls often give themselves over to tremulous whispering and they emphasize excitement by snapping their beaks in an alarming manner.

Any bird that is flying about and singing in the night time must be able to see where it is going, and the owls have special adaptations for this. The eyes are very large and the yellow iris opens and closes about the pupil quite similar to the arrangement in the cat's eye, except that the pupil in the owl's eye is round when contracted instead of elongated; in the night this pupil is expanded until it covers most of the eye. The owl does not need to see behind and at the sides, since it does not belong to the birds which are the victims of other birds and animals of prey. The owl is a bird that hunts instead of being hunted, and it needs only to focus its eyes on the creature it is chasing. Thus, its eyes are in the front of the head like our own; but it can see behind, in case of need, for the head turns upon the neck as if it were fitted on a ball-bearing joint. I have often...
amused myself by walking around a captive screech owl, which would follow me with its eyes by turning the head until it almost made the circle, then the head would twist back with such lightning rapidity that I could hardly detect the movement; it seemed almost as if the head was on a pivot and could be moved around and around indefinitely. Although the owl, like the cat, has eyes fitted for night hunting, it can also see fairly well during the daytime.

A beak with the upper mandible ending in a sharp hook signifies that its owner lives upon other animals and needs to rend and tear flesh. The owl's beak thus formed is somewhat buried in the feathers of the face, which gives it a striking resemblance to a Roman nose. This, with the great, staring, round eyes, bestows upon the owl an appearance of great wisdom. But it is not the beak which the owl uses for a weapon of attack; its strong feet and sharp, curved claws are its weapons for striking the enemy and also for grappling with its prey. The outer toe can be moved back at will, so that in grasping its prey or its perch, two toes may be directed forward and two backward, thus giving a stronger hold.

The ear is very different in form from the ear of other birds; instead of being a mere hole opening into the internal ear, it consists of a fold of skin forming a channel which extends from above the eye around to the side of the throat. (See The Bird, Beebe, p. 217). Thus equipped, while hunting in the dark the owl is able to hear any least rustle of mouse or bird and to know in which direction to descend upon it. There has been no relation established between the ear tufts of the screech owl and its ears, so far as I know, but the way the bird lifts the tufts when it is alert, always suggests that this movement in some way opens up the ear.

In color there are two types among the screech owls, one reddish brown, the other gray. The back is streaked with black, the breast is marked with many shaft-lines of black. The whole effect of the owl's plumage makes it resemble a branch of a tree or a part of the bark, and thus it is protected from prying eyes, during the daytime when it is sleeping. Its plumage is very fluffy and its wing feathers, instead of being stiff to the very edge, have soft fringes which cushion the stroke upon the air. The owl's flight is, therefore, absolutely noiseless and the bird is thus able to swoop down upon its prey without giving warning of its approach.

The screech owls are partial to old apple orchards for nesting sites. They will often use an abandoned nest of a woodpecker; the eggs are almost as round as marbles and as white as chalk, showing very clearly that they are laid within a dark hole, otherwise their color would attract the eyes of enemies. There are usually four eggs; the fussy little owlets climb out of their home cave by the end of May and are the funniest little creatures imaginable. They make interesting but decidedly snappy pets; they can be fed on insects and raw beef. It is most interesting to see one wake up late in the afternoon after its daytime sleep. All day it has sat motionless upon its perch with its toes completely covered with its fluffy feather skirt. Suddenly its eyes open, the round pupils enlarging or contracting with great rapidity as if adjusting themselves to the amount of light. When the owl winks it is like a moon in eclipse, so large are the eyes, and so entirely are they obscured by the lids which seem like circular curtains. When it yawns, its wide bill absurdly resembles a human mouth, and the yawn is very human in its expression. It then stretches its wings and it is astonishing how long this wing can be extended below the feet.
It then begins its toilet. It dresses its feathers with its short beak, nibbling industriously in the fluff; it scratches its under parts and breast with its bill, then cleans the bill with its foot, meanwhile moving the head up and down as if in an attempt to see better its surroundings.

The owls are loyal lovers and are said to remain mated through life, the twain being very devoted to their nests and nestlings. Sometimes the two wise-looking little parents sit together on the eggs, a most happy way to pass the wearisome incubation period.

The screech owls winter in the north and they are distinctly foresighted in preparing for winter. They have often been observed catching mice, during the late fall, and placing them in some hollow tree for cold storage, whence they may be taken in time of need. Their food consists to some extent of insects, especially night-flying moths and beetles, also caterpillars and grasshoppers. However, the larger part of their food is mice; sometimes small birds are caught and the English sparrow is a frequent victim. Chickens are rarely taken, except when small, since this owlet is not as long as a robin. It swallows its quarry as whole as possible, trusting to its inner organs to do the sifting and selecting. Later it throws up pellets of the indigestible bones, hair, etc. By the study of these pellets, found under owl roosts, the scientists have been able to determine the natural food of the bird, and they all unite in assuring us that the screech owl does the farmer much more good than harm, since it feeds so largely upon creatures which destroy his crops.

LESSON XXV

THE SCREECH OWL

Leading thought—This owl is especially adapted to get its prey at night. It feeds largely on field mice, grasshoppers, caterpillars and other injurious insects and is therefore the friend of the farmer.

Method—This lesson should begin when the children first hear the cry of this owl; and an owlet in captivity is a fascinating object for the children to observe. However, it is so important that the children learn the habits of this owl that the teacher is advised to hinge the lesson on any observation whatever made by the pupils, and illustrate it with pictures and stories.

Observations—1. Have you ever heard the screech owl? At what time of the day or night? Why was this? Why does the owl screech? How did you feel when listening to the owl’s song?

2. Describe the owl’s eyes. Are they adapted to see by night? What changes take place in them to enable the owl to see by daytime also? In what way are the owl’s eyes similar to the cat’s? Why is it necessary for an owl to see at night? Are the owl’s eyes placed so that they can see at the sides like other birds. How does it see an object at the sides or behind it?

3. Note the owl’s beak. For what purpose is a hooked beak? How does the owl use its beak? Why do we think that the owl looks wise?

4. Describe the feet and claws of the screech owl. What are such sharp hooked claws meant for? Does an owl on a perch always have three toes directed forward and one backward?
5. Describe the colors of the screech owl. Are all these owls of the same color? How do these colors protect the bird from its enemies?

6. How is the owl’s plumage adapted to silent flight? Why is silent flight advantageous to this bird?

7. How does the owl’s ear differ from the ears of other birds? Of what special advantage is this? As the owl hunts during the night, what does it do in the daytime? How and by what means does it hide itself?

8. Where does the screech owl make its nest? Do you know anything about the devotion of the parent owls to each other and to their young? How many eggs are laid? What is their color? At what time of year do the little owls appear?

9. Where does the screech owl spend the winter? What do the screech owls feed upon? Do they chew their food? How do they get rid of the indigestible portion of their food? How does this habit help the scientists to know the food of the owls?

10. How does the screech owl work injury to the farmers? How does it benefit them? Does not the benefit outweigh the injury?

11. How many other kinds of owls do you know? What do you know of their habits?

Supplementary reading—Audubon Educational Leaflets, Nos. 22, 12, 14; Second Book of Birds, Miller, Chap. 32–3; Familiar Wild Animals, Lottridge; “The Boy and Hushwing,” Kindred of the Wild; “Koos, Koos, Koos” in Wilderness Ways; Wings and Fins, chap. 19; Heart of Oak Books, Vol. 4, p. 51; The Aziola, Shelley; American Birds, Finley.

TWO WISE OWLS

We are two dusky owls, and we live in a tree;
Look at her,—look at me!
Look at her,—she’s my mate, and the mother of three
Pretty owlets, and we
Have a warm cozy nest, just as snug as can be.

We are both very wise; for our heads, as you see,
(Look at her—look at me!) Are as large as the heads of four birds ought to be;
And our horns, you’ll agree,
Make us look wiser still, sitting here on the tree.

And we care not how gloomy the night-time may be;
We can see,—we can see
Through the forest to roam, it suits her, it suits me;
And we’re free,—we are free
To bring back what we find, to our nest in the tree.

—Anonymous.
THE HEN HAWKS

Teacher's Story

"Above the tumult of the cañon lifted, the gray hawk breathless hung,

Or on the hill a winged shadow drifted where furze and thornbush clung."

—BRET HARTE.

It is the teacher's duty and privilege to try to revolutionize some popular misconceptions about birds, and two birds, in great need in this respect, are the so-called hen hawks. They are most unjustly treated, largely because most farmers consider that a “hawk is a hawk,” and should always be shot to save the poultry, although there is as much difference in the habits of hawks as there is in those of men. The so-called hen hawks are the red-shouldered and the red-tailed species, the latter being somewhat the larger and rarer of the two; both are very large birds; the red-shouldered has cinnamon brown epaulets, the tail blackish, crossed by five or six narrow white bars, and the wing feathers are also barred. The red-tailed species has dark brown wings, the feathers not barred, and is distinguished by its tail which is brilliant cinnamon color with a black bar across it near the end; it is silvery white beneath. When the hawk is soaring, its tail shows reddish as it wheels in the air. Both birds are brown above and whitish below, streaked with brown.

The flight of these hawks is alike and is very beautiful; it consists of soaring on outstretched wings in wide circles high in the air, and is the ideal of graceful aerial motion. In rising, the bird faces the wind and drops a little in the circle as its back turns to the leeward, and thus it climbs an invisible winding stair until it is a mere speck in the sky. This wonderful flight, on motionless wings, is what has driven to despair our inventors of airships who have not been able to fathom the mystery of it from a practical standpoint. When the bird wishes to drop, it lifts and
holds its wings above its back, and comes down like a lump of lead, only to catch itself whenever it chooses to begin again to climb the invisible spiral. And all this is done without fatigue, for these birds have been observed to soar thus for hours together without coming to earth. When thus soaring the two species may be distinguished from each other by their cries; the red-tailed gives a high sputtering scream, which Chapman likens to the sound of escaping steam; while the red-shouldered calls in a high not unmusical note "kee-you, kee-you" or "tee-ur, tee-ur."

The popular fallacy for the teacher to correct about these birds, is that they are enemies of the farmers. Not until one has actually been seen to catch the chickens should it be shot, for very few of them are guilty of this sin. Sixty-six per cent. of the food of the red-tailed species consists of injurious animals, i.e., mice and gophers, etc., and only 7 per cent. consists of poultry; the victims are probably old or disabled fowls, and fall an easy prey; this bird much prefers mice and reptiles to poultry. The more common red-shouldered hawk feeds generally on mice, snakes, frogs, fish and is very fond of grasshoppers. Ninety per cent. of its food consists of creatures which injure our crops or pastures and scarcely 1 1/2 per cent. is made up of poultry and game. These facts have been ascertained by the experts in the department of Agriculture at Washington who have examined the stomachs of hundreds of these hawks taken from different localities. Furthermore, Dr. Fisher states that a pair of the red-shouldered hawks bred for successive years within a few hundred yards of a poultry farm, containing 800 young chickens and 400 ducks, and the owner never saw them attempt to catch a fowl.

However, there are certain species of hawks which are to be feared; these are the Cooper's hawk and the sharp-shinned hawk, the first being very destructive to poultry and the latter killing many wild birds. These are both somewhat smaller than the species we are studying. They are dark gray above and have very long tails, and when flying, they flap their wings for a time and then glide a distance. They do not soar on motionless outspread pinions by the hour.

When hawks are seen soaring, they are likely to be hunting for mice in the meadows below them; their eyes are remarkably keen; they can see a moving creature from a great height, and can suddenly drop upon it like a thunder bolt out of a clear sky. Their wonderful eyes are far-sighted when they are circling in the sky, but as they drop, the
focus of the eyes changes automatically with great rapidity, so that by the time they reach the earth they are near-sighted, a feat quite impossible for our eyes unless aided by glasses or telescope.

These so-called hen hawks will often sit motionless, for hours at a time, on some dead branch or dead tree; they are probably watching for something eatable to stir within the range of their keen vision. When seizing its prey, a hawk uses its strong feet and sharp, curved talons. All hawks keep their claws sharp and polished, even as the warrior keeps his sword bright, so as to be ready for use; the legs are covered by a growth of feathers extending down from above, looking like feather trousers. The beak is hooked and very sharp and is used for tearing apart the flesh of the quarry. When a hawk fights some larger animal or man, it throws itself over upon its back and strikes its assailant with its strong claws as well as with its beak; but the talons are its chief weapons.

Both species build a large, shallow nest of coarse sticks and grass, lined with moss, feathers, etc.; it is a rude, rough structure, and is placed in tall trees from fifty to seventy-five feet from the ground. Only two to four eggs are laid; these are whitish spotted with brown. These hawks are said to remain mated for life and are devoted to each other and their young. Hawks and eagles are very similar in form and habits, and if the eagle is a noble bird so is the hawk.

LESSON XXVI

The Red-shouldered and Red-tailed Hawks

Leading thought—Ignorant people consider all hawks dangerous neighbors because they are supposed to feed exclusively on poultry. This idea is false and we should study carefully the habits of hawks before we shoot them. The ordinary large reddish “hen-hawks,” which circle high above meadows, are doing great good to the farmer by feeding upon the mice and other creatures which steal his grain and girdle his trees.

Methods—Begin by observations on the flight of one of these hawks and supplement this with such observations as the pupils are able to make, or facts which they can discover by talking with hunters or others and by reading.

Observations—1. How can you tell a hawk, when flying, from a crow or other large bird? Describe how it soars? Does it move off in any direction; if so, does it move off in circles? How often does it make strokes with its wings? Does it rise when it is facing the wind and fall as it turns its back to the wind?

2. Have you seen a hawk flap its wings many times and then soar for a time? If so, what hawk do you think it was? How does it differ in habits from the “hen-hawks”?

3. Have you noticed a hawk when soaring drop suddenly to earth? If so, why did it do this?

4. How does a hawk hunt? How can it see a mouse in a meadow when it is so high in the air that it looks like a circling speck in the sky? If it is so far-sighted as this, how can it be near-sighted enough to catch the mouse when it is close to it? Would you not have to use field glasses or telescope to do this?
5. When a hawk alights what sort of a place does it choose? How does it act?

6. Do hawks seize their prey with their claws or their beaks? What sort of feet and claws has the hawk? Describe the beak? What do you think this shaped beak is meant for?

7. Why do people shoot hawks? Why is it a sign of ignorance in people to wish to shoot all hawks?

8. What is the food of the red-shouldered hawk as shown by the bulletin of the U. S. Department of Agriculture or by the Audubon leaflets?

9. Where does the hawk place its nest? Of what does it build its nest?

10. Compare the food and the nesting habits of the red-shouldered and red-tailed hawks?

11. How devoted are the hawks to their mates and their young? Does a hawk, losing its mate, live alone ever after?

12. Describe the colors of the hen hawks and describe how you can tell the two species apart by the colors and markings of the tail.

13. What is the cry of the hawk? How can you tell the two species apart by this cry? Does the hawk give its cry only when on the wing?

14. Why should an eagle be considered so noble a bird and the hawk be so scorned? What difference is there between them in habits?

Yet, ere the noon, as brass the heaven turns,
The cruel sun smites with unerring aim,
The sight and touch of all things blinds and burns,
And bare, hot hills seem shimmering into flame!

On outspread wings a hawk, far poised on high,
Quick swooping screams, and then is heard no more:
The strident shrilling of a locust nigh
Breaks forth, and dies in silence as before.

—“Summer Drought,” by J. P. Irvine.
THE SWALLOWS AND THE CHIMNEY SWIFT

Teacher’s Story

These friendly little birds spend their time darting through the air on swift wings, seeking and destroying insects which are foes to us and our various crops. However, it is safe to assume that they are not thinking of us as they skim above our meadows and ponds, hawking our tiny foes; for like most of us, they are simply intent upon getting a living. Would that we might perform this necessary duty as gracefully as they.

In general, the swallows have a long, slender, graceful body, with a long tail which is forked or notched, except in the case of the eave swallow. The beak is short but wide where it joins the head; this enables the bird to open its mouth wide and gives it more scope in the matter of catching insects; the swift flight of the swallows enables them to catch insects on the wing; their legs are short, the feet are weak and fitted for perching; it would be quite impossible for a swallow to walk or hop like a robin or blackbird.

The eave, or cliff, swallows—These swallows build under the eaves of barns or in similar locations. In early times they built against the sides of cliffs; but when man came and built barns, they chose them for their dwelling sites. The nest is made of mud pellets and is somewhat globular.
in shape, with an entrance at one side. When building on the sides of cliffs or in unprotected portions of a barn, a covered passage is built around the door, which gives the nest the shape of a gourd or retort; but when protected beneath the eaves the birds seem to think this vestibule is unnecessary. The mud nest is warmly lined with feathers and soft materials, and there are often many nests built so closely together that the birds touch. The eave swallow comes north about May 1st, and soon after that, may be seen along streams or other damp places gathering mud for the nests. It seems necessary for the bird to find clay mud in order to render the nest strong enough to support the eggs and nestlings. The eggs are white, blotched with reddish brown. The parents cling to

![The barn swallow's feather bed.](image)

the edge of the nest when feeding the young. Both the barn and eave swallows are blue above but the eave swallow has the forehead cream white and the rump of pale brick-red, and its tail is square across the end as seen in flight. The barn swallow has a chestnut forehead and its outer tail feathers are long, making a distinct fork during flight, and it is not red upon the rump.

The barn swallows—These birds choose a barn where there is a hole in the gable or where the doors are kept open all the time. They build upon beams or rafters, making a cup-shaped nest of layers of pellets of mud, with grass between; it is well lined with feathers. The nest is usually the shape of half of a shallow cup which has been cut in two lengthwise, the cut side being plastered against the side of the rafter. Sometimes the
nests are more or less supported upon a beam or rafter; the eggs are white and dotted with reddish brown. The barn swallows, aside from their constant twittering, have also a pretty song. Both parents work at building the nest and feeding the young; there are likely to be several pairs nesting in the same building. The parents continue to feed the young long after they have left the nest; often a whole family may be seen sitting on a telegraph wire or wire fence, the parents still feeding the well-grown youngsters. This species comes north in the latter part of April and leaves early in September. It winters as far south as Brazil.

The bank swallow has a distinctly tailor-made appearance; its red-brown vest and iridescent blue coat, with deeply forked “coat tails” give it an elegance of style which no other bird, not even the chic cedar waxwing can emulate.

The Bank Swallow—When we see a sandy bank apparently shot full of holes as by small cannon balls, we may know that we have found a tenement of bank swallows. These birds always choose the perpendicular banks of creeks or of railroad cuts or of sand pits for their nesting sites; they require a soil sufficiently soft to be tunneled by their weak feet, and yet not so loose as to cave in upon the nest. The tunnel may extend from one to four feet horizontally in the bank with just enough diameter to admit the body of the rather small bird. The nest is situated at the extreme end of the tunnel and is lined with soft feathers and grasses.

The bank swallows arrive late in April and leave early in September. They may be distinguished from the other species by their grayish color above; the throat and breast are white with a broad, brownish band across the breast; the tail is slightly forked. The rough-winged swallow, which is similar in habits to the bank swallow, may be distinguished from it by its gray breast which has no dark band.
The Tree Swallow—This graceful little bird builds naturally in holes in trees, but readily accepts a box if it is provided. It begins to build soon after it comes north in late April and it is well for us to encourage the tree swallows to live near our houses by building houses for them and driving away the English sparrows. The tree swallows live upon many insects which annoy us and injure our gardens and damage our orchards; they are, therefore, much more desirable neighbors than the English sparrows. The tree swallows congregate in great numbers for the southern migration very early in the season, often in early August. They are likely to congregate in marshes, as are also the other swallows. In color the tree swallow has a green metallic back and head, a pure white breast with no band across it, and these peculiarities distinguish it from all other species.

The Purple Martin—The martin is a larger bird than the largest swallow, being eight inches in length, while the barn swallow does not measure quite seven. The male is shining, steel-blue above and below; the female is brownish above, has a gray throat, brownish breast and is white beneath. The martins originally nested in hollow trees but for centuries have been cared for by man. The Indians were wont to put out empty gourds for them to nest in; and as soon as America was settled by Europeans, martin boxes were built extensively. But when the English sparrows came, they took possession of the boxes, and the martins have to a large extent
disappeared, this is a pity since they are beneficial birds, feeding upon insects which are injurious to our farms and gardens. They are also delightful birds to have around, and we may possibly induce them to come back to us by building houses for them and driving away the sparrows.

The Chimney Swift

When the old-fashioned fire-places went out of use and were walled up, leaving the great old chimney walls useless, these sociable birds took possession of them. Here they built their nests and reared their young, and twittered and scrambled about, awakening all sleepers in the neighborhood at earliest dawn, and in many ways made themselves a distinct part of family life. With the disappearance of these old chimneys and the growing use of the smaller chimney, the swifts have been more or less driven from their close association with people; and now their nests are often found in hay barns or other secluded buildings, although they still gather in chimneys when opportunity offers.

The chimney swifts originally built nests in hollow trees and caves; but with the coming of civilization they took possession of the chimneys disused during the summer, and here is where we know them best. The nests are shaped like little wall pockets; they are made of small sticks of nearly uniform size which are glued together and glued fast to the chimney wall by means of the saliva secreted in the mouth of the bird. After the nesting season, the swifts often gather in great flocks and live together in some large chimney; toward night-fall they may be seen circling about in great numbers and dropping into the mouth of the chimney, one by one, as if they were being poured into a funnel. In the morning they leave in reverse manner, each swift flying about in widening circles as it leaves the chimney. The swifts are never seen to alight anywhere except in hollow trees or chimneys or similar places; their tiny feet have sharp claws for clinging to the slightest roughness of the upright wall; the tail acts as a prop, each tail feather ending in a spine which is pressed against the chimney side when the bird alights and thus enables it to cling more firmly. In this fashion the swifts roost, practically hung up against a wall.

The swift has a short beak and wide mouth which it opens broadly to engulf insects as it darts through the air. Chimney swifts have been known to travel at the rate of 110 miles an hour.

This bird should never be confused with the swallows, for when flying, its tail seems simply a sharp point, making the whole body cigar-shaped. This character alone distinguishes it from the long tailed swallows. In color it is sooty brown, with a gray throat and breast; the wings are long and narrow and apparently curved. The manner of flight and appearance in the air make it resemble the bat more than it does the swallow.
LESSON XXVII

The Swallows and Swifts

Leading thought—The swallows are very graceful birds and are exceedingly swift fliers. They feed upon insects which they catch upon the wing. There are five native swallows which are common—the eave, or cliff, the barn, the bank, the tree swallow and the purple martin. The chimney swift, although often called so, is not a swallow; it is more nearly related to the hummingbird than to the swallows.

Method—The questions should be given as an outline for observation, and may be written on the blackboard or placed in the field notebook. The pupils should answer them individually and from field observation. We study the swifts and swallows together to teach the pupils to distinguish them apart.

Observations—1. What is the general shape of the swallow? What is the color of the forehead, throat, upper breast, neck, rump and tail?
2. Is the tail noticeably forked especially during flight?
3. Describe the flight of the swallow. What is the purpose of its long, swift flight? How are the swallow's wings fitted for carrying the bird swiftly?
4. Describe the form of the beak of the swallow. How does it get its food? What is its food?
5. In what particular locations do you see the swallows darting about? At what time of day do they seem most active?
6. Describe the swallow's legs and feet and explain why they look so different from those of the robin and blackbird.

The Eave, or Cliff Swallow

7. Where do the eave swallows build their nests? Of what material is the outside? The lining? Describe the shape of the nest and how it is supported.
8. How early in the spring do the eave swallows begin to make their nests? Where and by what means do they get the material for nest building? Are there a number of nests usually grouped together?
9. Describe the eave swallow's egg. Where do the parents sit when feeding the young? What is the note of the eave swallow?
10. What are the differences between the barn and the eave swallow in color and shape of tail?

The Barn Swallow

11. Where does the barn swallow place its nest? What is the shape of the nest? Of what material is it made?
12. What is the color of the eggs? Describe the feeding of the young and the sounds made by them and their parents. Do both parents work together to build the nest and feed the young?

13. Is there usually more than one nest in the same locality? When the young swallows are large enough to leave the nest, describe how the parents continue to care for them.

14. Have you ever heard the barn swallows sing? Describe their conversational notes.

15. When do the barn swallows migrate and where do they go during the winter? How can you distinguish the barn swallow from the eave swallow?

The Bank Swallow

16. Where do the bank swallows build? What sort of soil do they choose?

17. How does a bank look which is tenanted by these birds?

18. How far do the bank swallows tunnel into the earth? What is the diameter of one of these tunnels? Do they extend straight or do they rise or deflect?

19. With what tools is the tunnel excavated? Where is the nest situated in the tunnel and how is it lined?

20. How can you distinguish this species from the barn and eave and tree swallows? At what time do the bank swallows leave us for migration south?

The Tree Swallow

21. Where does the tree swallow make its nest? How does its nest differ from that of the barn, eave, or bank swallow? When does it begin to build?

22. How can we encourage the tree swallow to build near our houses? Why is the tree swallow a much more desirable bird to have in bird houses than the English sparrow?

23. Describe the peculiar migrating habits of the tree swallow. How can you tell this species from the barn, the eave and the bank swallows?

The Purple Martin

24. Compare the purple martin with the swallows and describe how it differs in size and color.

25. Where did the Martins build their nests before America was civilized? Where do they like to nest now? How do the purple martins benefit us and how can we induce them to come to us?
The Chimney Swift

26. Where do the chimney swifts build their nests? Of what materials is the nest made? What is its shape and how is it supported? Where does the chimney swift get its glue for nest building?

27. Describe how the chimney swifts enter their nesting place at night. Where and how do they perch? Describe the shape of the swift's tail and its use to the bird when roosting.

28. On what does the chimney swift feed and how does it procure this food? Describe how its beak is especially fitted for this?

29. How can you distinguish the chimney swift from the swallows? In what respect does the chimney swift resemble the swallows? In what respects does it differ from them?

THE HUMMINGBIRD
Teacher's Story

Formerly it was believed that this daintiest of birds found the nectar of flowers ample support for its active life; but the later methods of discovering what birds eat by examining the contents of their stomachs, show that the hummingbird is an insect eater of most ravenous appetite. Not only does it catch insects in mid air, but undoubtedly they are feasting on the nectar of the tubular flowers which the hummingbird loves to visit. Incidentally, the hummingbird carries the pollen for these flowers and may be counted as a friend in every respect, since usually the insects in the nectaries of the flowers with long tubular corollas, are stealing nectar without giving in return compensation to the flower by carrying its pollen. Such insects may be the smaller beetles, ants and flies. The adaptations of the hummingbird's beak and long, double-tubed tongue, are especially for securing this mingled diet of insects and nectar. It is interesting to note that the young hummingbirds have the beak much shorter than when mature. Its beak is exactly fitted to probe those flowers where the hummingbird finds its food. The tongue has the outer edges curved over making a tube on each side. These tubes are provided with minute brushes at the tips and thus are fitted both for sucking nectar and for sweeping up the insects.

The natural home of the hummingbird seems to have been in the Ameri-
can tropics. Our one species east of the Rocky Mountains with which we are all familiar has a ruby throat. This comes to us after a very long journey each year. One species on the Pacific Coast is known to travel three thousand miles to the north for the summer and back again in winter.

Hummingbirds are not supposed to sing, but to use their voices for squeaking when angry or frightened. However, I once had the privilege of listening to a true song by a hummingbird on the Pacific Coast. The midget was perched upon a twig and lifted up his voice with every appearance of ecstasy in pouring forth his lay. To my uncultured ear this song was a fine, shrill, erratic succession of squeaks, “as fine as a cambric needle,” said my companion.

The nest of the hummingbird is a most exquisite structure; it is about three-fourths of an inch in diameter on the inside and about half an inch deep. It is, in shape, a symmetrical cup; the outside is covered with lichens to make it exactly resemble the branch on which it rests; the inside is lined with the down of plant seeds and plant fibres. The lichens are often fastened to the outside with the silk web of spiders or caterpillars. The nest is usually saddled on a branch of a tree from 10 to 50 feet above the ground. The eggs are two in number and white; they look like tiny beans. The young are black and look, at first glance, more like insects than like birds.

LESSON XXVIII

The Hummingbird

Leading thought—The hummingbird in flight moves its wings so rapidly that we cannot see them. It can hold itself poised above flowers while it thrusts its long beak into them for nectar and insects.

Method—Give the questions to the pupils and let them make the observations when they have the opportunity.

Observations—1. Where do you find the hummingbird? What flowers was it visiting? At what time of day? Can you tell whether it is a hummingbird or a hawk-moth which is visiting the flowers? At what time of day do the hawk-moths appear?

2. Does the hummingbird ever come to rest? Describe its actions while resting.

3. What are the colors of the back, throat, breast and under parts? How do you distinguish the mother hummingbird from her mate?

4. How does the hummingbird act when extracting the nectar? How does it balance itself in front of a flower? Have you ever seen hummingbirds catch insects in the air? If so, describe how they did it.

5. Describe the hummingbird’s nest. How large is it in diameter? What is the covering outside? With what is it lined?
THE RED-WINGED BLACKBIRD

Teacher’s Story

The blackbirds are among our earliest visitors in the spring; they come in flocks and beset our leafless trees like punctuation marks, meanwhile squeaking like musical wheelbarrows. What they are, where they come from, where they are going and what they are going to do, are the questions that naturally arise at the sight of these sable flocks. It is not easy to distinguish grackles, cowbirds and rusty blackbirds at a glance, but the red-wing proclaims his identity from afar. The bright red epaulets, margined behind with pale yellow, is a uniform to catch the admiring eye. The bird’s glossy black plumage brings into greater contrast his bright decorations. That he is fully aware of his beauty, who can doubt who has seen him come sailing down at the end of his strong, swift flight, and balancing himself on some bending reed, drop his long tail as if it were the crank of his music box, and holding both wings lifted to show his scarlet decorations, sing his “quong quere-ee.” Little wonder that such a handsome, military looking fellow should be able now and then to win more than his share of feminine admiration. But what though he become an entirely successful bigamist or even trigamist, he has proven himself to be a good protector of each and all of his wives and nestlings; however, he often has but one mate.

“The red-wing flutes his O-ka-lee” is Emerson’s graphic description of the sweet song of the red-wing; he also has many other notes. He clucks to his mates and clucks more sharply when suspicious, and has one alarm note that is truly alarming. The male red-wings come from the South in March; they appear in flocks, often three weeks before their mates arrive. The female looks as though she belonged to quite a different species. Although her head and back are black, the black is decidedly rusty; it is quite impossible to describe her, she is so inconspicuously speckled with brown, black, whitish buff and orange. Most of us never recognize her unless we see her with her spouse. As she probably does most of the nest
building, her suit of salt, pepper and mustard renders her invisible to the keen eyes of birds of prey. Only when she is flying, does she show her blackbird characteristics,—her tail being long and of obvious use as a steering organ; and she walks with long, stiff strides. The red-wings are ever to be found in and about swamps and marshes. The nest is built usually in May; it is made of grasses, stalks of weeds and is lined with finer grass or reeds. It is bulky and is placed in low bushes or among the reeds. The eggs are pale blue, streaked and spotted with purple or black. The young resemble the mother in color, the males being obliged to wait a year for their epaulets. As to the food of the red-wings here in the North, Mr. Forbush says:

"Although the red-wings almost invariably breed in the swamp or marsh, they have a partiality for open fields and plowed lands; however, most of the blackbirds that nest in the smaller swamps adjacent to farm lands get a large share of their food from the farmer's fields. They forage about the fields and meadows when they first come north in the spring. Later, they follow the plow, picking up grubs, worms and caterpillars; and should there be an outbreak of canker-worms in the orchard, the blackbirds will fly at least half a mile to get canker-worms for their young. Wilson estimated that the red-wings of the United States would in four months destroy sixteen thousand two hundred million larvae. They eat the caterpillars of the gypsy moth, the forest tent-caterpillar, and other hairy larvae. They are among the most destructive birds to weevils, click beetles, and wire-worms. Grasshoppers, ants, bugs, and flies form a portion of the red-wing's food. They eat comparatively little grain in Massachusetts although they get some from newly sown fields in spring, as well as from the autumn harvest; but they feed very largely on the seeds of weeds and wild rice in the fall. In the South they join with the bobolink in devastating the rice fields, and in the West they are often so numerous as to destroy the grain in the fields; but here the good they do far outweighs the injury, and for this reason they are protected by law."
LESSON XXIX

The Red-winged Blackbird

Leading thought—The red-winged blackbird lives in the marshes where it builds its nest. However, it comes over to our plowed lands and pastures and helps the farmer by destroying many insects which injure the meadows, crops and trees.

Method—The observations should be made by the pupils individually in the field. These birds may be looked for in flocks early in the spring, but the study should be made in May or June when they will be found in numbers in almost any swamp. The questions may be given to the pupils a few at a time or written in their field notebooks and the answers discussed when discovered.

Observations—1. How can you distinguish the red-winged blackbird from all other blackbirds? Where is the red on his wings? Is there any other color besides black on the wings? Where? What is the color of the rest of the plumage?

2. What is there peculiar in the flight of the red-wing? Is its tail long or short? How does it use its tail in flight? What is its position when the bird alights on a reed?

3. What is the song of the red-wing? Describe the way he holds his wings and tail when singing, balanced on a reed or some other swamp grass. Does he show off his epaulettes when singing? Why? What note does he give when he is surprised or suspicious? When frightened?

4. When does the red-wing first appear in the spring? Does he come alone or in flocks? Does his mate come with him? Where do the red-wings winter? In what localities do the red-wing blackbirds live? Why do they live there? What is the color of the mother red-wing? Would you know by her looks that she was a blackbird? What advantage is it to the pair that the female is so dull in color?

5. At what time do these birds nest? Where is the nest built? Of what material? How is it concealed? What is the color of the eggs?

6. Do the young birds resemble in color their father or their mother? Why is this an advantage?

7. Is the red-wing ever seen in fields adjoining the marshes? What is he doing there? Does he walk or hop when looking for food? What is the food of the red-wings? Do they ever damage grain? Do they not protect grain more than they damage it?

8. What great good do the red-wings do for forest trees? For orchards?

9. At what time in the summer do the red-wings disappear from the swamps? Where do they gather in flocks? Where is their special feeding ground on the way south for the winter?
THE BALTIMORE ORIOLE

Teacher's Story

"I know his name, I know his note,
 That so with rapture takes my soul;
Like flame the gold beneath his throat,
 His glossy cope is black as coal.
O Oriole, it is the song
 You sang me from the cottonwood,
Too young to feel that I was young,
 Too glad to guess if life were good."—William Dean Howells.

ANGLING from the slender, drooping branches of the elm in winter, these pocket nests look like some strange persistent fruit; and, indeed, they are the fruit of much labor on the part of the oriole weavers, those skilled artisans of the bird world. Sometimes the oriole "For the summer voyage his hammock swings" in a sapling, placing it near the main stem and near the top, otherwise it is almost invariably hung at the end of branches and is rarely less than twenty feet from the ground. The nest is pocket-shaped, and usually about seven inches long, and four and a half inches wide at the largest part, which is the bottom. The top is attached to forked twigs at the Y so that the mouth or door will be kept open to allow the bird to pass in and out; when within, the weight of the bird causes the opening to contract somewhat and protects the inmate from prying eyes. Often the pocket hangs free so that the breezes may rock it, but in one case we found a nest with the bottom stayed to a twig by guy lines. The bottom is much more closely woven than the upper part for a very good reason, since the open meshes admit air to the sitting bird. The nest is lined with hair or other soft material, and although this is added last, the inside of the nest is woven first. The orioles like to build the framework of twine, and it is marvellous how they will loop this around a twig almost as evenly knotted as if crocheted; in and out of this net the mother bird with her long, sharp beak weaves bits of wood fibre, strong, fine grass and scraps of weeds. The favorite lining is horse hair, which simply cushions the bottom of the pocket. Dr. Detwiler had a pet oriole which built her nest of his hair which she pulled from his head; is it possible that orioles get their supply of horse hair in a similar way? If we put in convenient places, bright colored twine or narrow ribbons the orioles will weave them into the nest, but the strings should not be long, lest the birds become entangled. If the nest is strong the birds will use it a second year.

That Lord Baltimore found in new America a bird wearing his colors, must have cheered him greatly; and it is well for us that this brilliant bird brings to our minds kindly thoughts of that tolerant, high-minded English nobleman. The oriole's head, neck, throat and part of the back are black; the wings are black but the feathers are margined with white; the tail is black except that the ends of the outer feathers are yellow; all the rest of the bird is golden orange, a luminous
color which makes him seem a splash of brilliant sunshine. The female, although marked much the same, has the back so dull and mottled that it looks olive-brown; the rump, breast, and under parts are yellow but by no means showy. The advantage of these quiet colors to the mother bird is obvious since it is she that makes the nest and sits in it without attracting attention to its location. In fact, when she is sitting, her brilliant mate places himself far enough away to distract the attention of meddlers, yet near enough for her to see the flash of his breast in the sunshine and to hear his rich and cheering song. He is a good spouse and brings her the materials for the nest which she weaves in, hanging head downward from a twig and using her long sharp beak for a shuttle. And his glorious song is for her alone; some hold that no two orioles have the same song; I know of two individuals at least whose songs were sung by no other birds; one gave a phrase from the Waldvogel's song in Sigfried; the other whistled over and over, "Sweet birdie, hello, hello." The orioles can chatter and scold as well as sing.

The oriole is a brave defender of his nest and a most devoted father, working hard to feed his ever hungry nestlings; we can hear these hollow mites peeping for more food, "Tee dee dee, Tee dee dee", shrill and constant, if we stop for a moment under the nest in June. The young birds dress in the safe colors of the mother, the males not donning their bright plumage until the second year. A brilliant colored fledgling would not live long in a world where sharp eyes are in constant quest for little birds to fill empty stomachs.

The food of the oriole places it among our most beneficial birds, since it is always ready to cope with the hairy caterpillars avoided by most birds; it has learned to abstract the caterpillar from his spines and is thus able to swallow him minus his "whiskers." The orioles are waging a great war against the terrible brown-tail and gipsy moths in New England; they also eat click beetles and many other noxious insects. Once when we were breeding big caterpillars in the Cornell insectary, an oriole came in through the open windows of the greenhouse, and thinking he had found a bonanza proceeded to work it, carrying off our precious crawlers before we discovered what he was at.

The orioles winter in Central America and give us scarcely four months of their company. They do not usually appear before May and leave in early September.
An oriole nest An anchor to the windward.
Photo by C. R. Crosby.

LESSON XXX

The Oriole

Leading thought—The oriole is the most skillful of all our bird architects. It is also one of our prized song birds and is very beneficial to the farmer and fruit grower because of the insect pests which it destroys.

Method—Begin during winter or early spring with a study of the nest, which may be obtained from the elms of the roadsides. During the first week in May, give the questions concerning the birds and their habits. Let the pupils keep the questions in their note-books and answer them when they have opportunity. The observations should be summed up once a week.

Observations by pupils—1. Where did you find the nest? On what species of tree? Was it near the trunk of the tree or the tip of the branch?

2. What is the shape of the nest? How long is it? How wide? Is the opening as large as the bottom of the nest? How is it hung to the twigs so that the opening remains open and does not pull together with the weight of the bird at the bottom? Is the bottom of the nest stayed to a twig or does it hang loose?
3. With what material and how is the nest fastened to the branches? Of what material is the outside made? How is it woven together? Is it more loosely woven at the top than at the bottom? How many kinds of material can you find in the outside of the nest?

4. With what is the nest lined? How far up is it lined? With what tool was the nest woven? If you put out bright colored bits of ribbon and string do you think the orioles will use them? Why should you not put out long strings?

5. At what date did you first see the Baltimore oriole? Why is it called the Baltimore oriole? How many other names has it? Describe in the following way the colors of the male oriole: top of head, back, wings, tail, throat, breast, under parts. What are the colors of his mate? How would it endanger the nest and nestlings if the mother bird were as bright colored as the father bird?

6. Which weaves the nest, the father or the mother bird? Does the former assist in any way in nest building?

7. Where does the father bird stay and what does he do while the mother bird is sitting on the eggs?

8. What is the oriole's song? Has he more than one song? What other notes has he? After the young birds hatch does the father bird help take care of them?

9. By the middle of June the young birds are usually hatched and if you know where an oriole nest is hung, listen and describe the call of the nestlings for food.

10. Which parent do the young birds resemble in their colors? Why is this a benefit?

11. What is the oriole's food? How is the oriole of benefit to us in ways which other birds are not?

12. Do the orioles use the same nest two years in succession? How long does the oriole stay in the North? Where does it spend its winters?

"Hush! 'tis he!
My oriole, my glance of summer fire,
Is come at last, and, ever on the watch,
Twitches the packthread I had luckily wound
About the bough to help his housekeeping,—
Twitches and scouts by turns, blessing his luck,
Yet fearing me who laid it in his way,
Nor, more than wiser we in our affairs.
Divines the Providence that hides and helps.
Heave, ho! Heave, ho! he whistles as the twine
Slackens its hold; once more, now! and a flash
Lightens across the sunlight to the elm
Where his mate dangles at her cup of felt."

—"Under the Willows", Lowell.
HOREAU says: "What a perfectly New England sound is this voice of the crow! If you stand still anywhere in the outskirts of the town and listen, this is perhaps the sound which you will be most sure to hear, rising above all sounds of human industry and leading your thoughts to some far-away bay in the woods. The bird sees the white man come and the Indian withdraw, but it withdraws not. Its untamed voice is still heard above the tinkling of the forge. It sees a race pass away, but it passes not away. It remains to remind us of aboriginal nature."

The crow is probably the most intelligent of all our native birds. It is quick to learn and clever in action, as many a farmer will testify who has tried to keep it out of corn fields with various devices, the harmless character of which the crow soon understood perfectly. Of all our birds, this one has the longest list of virtues and of sins, as judged from our standpoint; but we should listen to both sides of the case before we pass judgment. I find with crows, as with people, I like some more than I do others. I do not like at all the cunning old crow which steals the suet I put on the trees in winter for the chickadees and nuthatches; and I have hired a boy with a shotgun to protect the eggs and nestlings of the robins and other birds in my neighborhood from the ravages of one or two cruel
old crows that have developed the nest-hunting habit. On the other
hand, I became a sincere admirer of a crow flock which worked in a field
close to my country home, and I have been the chosen friend of several
tame crows who were even more interesting than they were mischievous.

The crow is larger than any other of our common blackbirds; the
northern raven is still larger, but is very rarely seen. Although the
crow’s feathers are black, yet in the sunlight a beautiful purple iridescence
plays over the plumage, especially about the neck and back; it has a
compact but not ungraceful body, and long, powerful wings; its tail is
medium sized and is not notched at the end; its feet are long and strong:
the track shows three toes directed forward and one long one directed
backward. The crow does not sail through the air as does the hawk, but
progresses with an almost constant flapping of the wings. Its beak is
very strong and is used for tearing the flesh of its prey and for defense,
and in fact, for almost anything that a beak could be used for; its eye is
all black and is very keen and intelligent. When hunting for food in the
field, it usually walks, but sometimes hops. The raven and the fish crows
are the nearest relatives of the American crow, and next to them the
jays. We should hardly think that the bluejay and the crow were
related to look at them, but when we come to study their habits, much is
to be found in common.

The crow’s nest is usually very large; it is made of sticks, of grape
vines and bark, sod, horse-hair, moss and grasses. It is placed in trees or
in tall bushes rarely less than twenty feet from the ground. The eggs are
pale bluish green or nearly white with brownish markings. The young
crows hatch in April or May. Both parents are devoted to the care of the
young, and remain with them during most of the summer. I have often
seen a mother crow feeding her young ones which were following her with
obstreperous caws, although they were as large as she.

While the note of the crow is harsh when close at hand, it has a musical
quality in the distance. Mr. Mathews says: “The crow when he sings
is nothing short of a clown; he ruffles his feathers, stretches his neck, like
a cat with a fish bone in her throat, and with a most tremendous effort
delivers a series of hen-like squawks.” But aside from his caw, the crow
has some very seductive soft notes. I have held long conversations with
two pet crows, talking with them in a high, soft tone and finding that they
answered readily in a like tone in a most responsive way. I have also
heard these same tones among the wild crows when they were talking
together; one note is a guttural tremolo, most grotesque.

Crows gather in flocks for the winter; these flocks number from fifty to
several hundred individuals, all having a common roosting place, usually
in pine or hemlock forests or among other evergreens. They go out from
these roosts during the day to get food, often making a journey of many
miles. During the nesting season they scatter in pairs and do not gather
again in flocks until the young are fully grown.

When crows are feeding in the fields there is usually, if not always, a
sentinel posted on some high point so that he can give warning of danger.
This sentinel is always an experienced bird and is keen to detect a
dangerous from a harmless intruder. I once made many experiments
with these sentinels; I finally became known to those of a particular flock
and I was allowed to approach within a few yards of where the birds were
feeding, a privilege not accorded to any other person in the neighborhood.
The crow is a general feeder and will eat almost any food; generally, however, it finds its food upon the ground. The food given to nestlings is very largely insects, and many pests are thus destroyed. The crows damage the farmer by pulling the sprouting corn and by destroying the eggs and young of poultry. They also do much harm by destroying the eggs and nestlings of our native birds which are beneficial to the farmer; they also do some harm by distributing the seeds of poison ivy and other noxious plants. All these must be set down in the account against the crow, but on the credit side must be placed the fact that it does a tremendous amount of good work for the farmer by eating injurious insects, especially the grubs and cut-worms which work in the ground, destroying the roots of grasses and grains. It also kills many mice and other rodents which are destructive to crops.

The best method of preventing crows from taking sprouting corn is to tar the seed corn, which is planted around the edge of the field.

If any of the pupils in your school have had any experience with tame crows they will relate interesting incidents of the love of the crow for glittering objects. I once knew a tame crow which stole all of the thimbles in the house and buried them in the garden; he would watch to see when a thimble was laid aside when the sewing was dropped, and would seize it almost immediately. This same crow persisted in taking the clothes-pins off the line and burying them, so that he was finally imprisoned on wash-days. He was fond of playing marbles with a little boy of the family. The boy would shoot a marble into a hole and then Billy, the crow, would take a marble in his beak and drop it into the hole. The bird understood the game perfectly and was highly indignant if the boy took his turn and made shots twice in succession.

References—The American Crow, Barrows & Schwartz, Bulletin No. 6, Division of Ornithology, U. S. Department of Agriculture; Birds in Relation to Man, Weed & Dearborn; Bird Neighbors, Blanchan; Birds of Villages and Field, Merriam; Outdoor Studies, Needham.

LESSON XXXI

The Crow

Leading thought—The crow has the keenest intelligence of any of our common birds. It does good work for us and also does damage. We should study its ways before we pronounce judgment, for in some localities it may be a true friend and in others an enemy.

Methods—This work should begin in winter with an effort on the part of the boys to discover the food of the crows while snow is on the ground. This is a good time to study their habits and their roosts. The nests are also often found in winter, although usually built in evergreens. The nesting season is in early April, and the questions about the nests should be given then. Let the other questions be given when convenient. The flight, the notes, the sentinels, the food, the benefit and damage may all be taken as separate topics.

The following topics for essays should be given to correlate with work in English: "What a pet crow of my acquaintance did;" "Evidences of crow intelligence;" "A plea a crow might make in self-defence to the farmer who wished to shoot him;" "The best methods of preventing crows from stealing planted corn."
Observations—1. How large is the crow compared with other black-birds?
2. Describe its colors when seen in the sunlight?
3. Describe the general shape of the crow.
4. Are its wings long and slender or short and stout?
5. Is the tail long or short? Is it notched or straight across the end?
6. Describe the crown's feet. Are they large and strong or slender?
How many toes does the track show in the snow or mud? How many are directed forward and how many backward?
7. Describe a crown's flight compared with that of the hawk.
8. Describe its beak and what it is used for.
9. What is the color of the crown's eye?
10. When hunting for food does the crow hop or walk?
11. Which are the crown's nearest relatives?
12. Where and of what material do the crows build their nests?
13. Describe the eggs. At what time of the year do the young crows hatch? Do both parents take care of and feed the young? How long do the parents care for the young after they leave the nest?
14. What are the notes of the crown? If you have heard one give any note except "caw," describe it.
15. Where and how do crows live in winter? Where do they live in summer?
16. Do they post sentinels if they are feeding in the fields? If so, describe the action of the sentinel on the approach of people.
17. Upon what do the crows feed? What is fed to the nestlings?
18. How do the crows work injury to the farmer? How do they benefit the farmer? Do you think they do more benefit than harm to the farmer and fruit-grower?
19. Have you known of instances of the crown's fondness for shining or glittering articles, like pieces of crockery or tin?

THE CARDINAL GROSBEAK

Teacher's Story

There never lived a Lord Cardinal who possessed robes of state more brilliant in color than the plumage of this bird. By the way, I wonder how many of us ever think when we see the peculiar red, called cardinal, that it gained its name from the dress of this high functionary of the church? The cardinal grosbeak is the best name for the redbird because that describes it exactly, both as to its color and its chief characteristic, since its beak is thick and large; the beak is also red, which is a rare color in beaks, and in order to make its redness more emphatic it is set in a frame of black feathers. The use of such a large beak is unmistakable, for it is strong enough to crush the hardest of seed shells or to crack the hardest and driest of grains.

"What cheer! What cheer!
That is the grosbeak's way,
With his sooty face and his coat of red"

sings Maurice Thompson. But besides the name given above, this bird has been called in different localities the redbird, Virginia redbird, crested redbird, winter redbird, Virginia nightingale, the red corn-cracker, but it remained for James Lane Allen to give it another name in his masterpiece, "The Kentucky Cardinal."

The cardinal is a trifle smaller than the robin and is by no means small and graceful, like the catbird or the scarlet tanager, but is quite stout and is a veritable chunk of brilliant color and bird dignity. The only other bird that rivals him in redness is the scarlet tanager which has black wings; the summer tanager is also a red bird, but is not so vermilion and is more slender and lacks the crest. The cardinal surely finds his crest useful in expressing his emotions; when all is serene, it lies back flat on the head, but with any excitement, whether of joy or surprise or anger, it lifts until it is as peaked as an old-fashioned nightcap. The cardinal's mate is of quiet color, her back is greenish gray and breast buffy, while her crest, wings and tail reflect in faint ways the brilliancy of his costume.

The redbird's song is a stirring succession of syllables uttered in a rich, ringing tone, and may be translated in a variety of ways. I have heard him sing a thousand times "tor-re'-do, tor-re'-do, tor-re'-do," but Dr. Dawson has heard him sing "che'-pew, che'-pew, we'-woo, we'-woo;" "bird-ie, bird-ie, bird-ie; tschew, tschew, tschew;" and "chit-e-kew, chit-e-kew; he-weet- he-weet." His mate breaks the custom of other birds of her sex and sings a sweet song, somewhat softer than his. Both birds utter a sharp note "tsip, tsip."

The nest is built in bushes, vines or low trees, often in holly, laurel or other low evergreens, and is rarely more than six or eight feet above the
ground. It is made of twigs, weed stems, tendrils, the bark of the grape vine and coarse grass; it is lined with fine grass and rootlets; it is rather loosely constructed but firm and is well hidden, for it causes these birds great anguish to have their nest discovered. Three or four eggs are laid, which are bluish white or grayish, dully marked with brown. The father cardinal is an exemplary husband and father; he cares for and feeds his mate tenderly and sings to her gloriously while she is sitting; and he works hard catching insects for the nestlings. He is also a brave defender of his nest and will attack any intruder, however large, with undaunted courage. The fledglings all have the dull color of the mother and have dark-colored bills. Their dull color protects the young birds from the keen eyes of their enemies while they are not yet able to take care of themselves. If the male fledglings were the color of their father, probably not one would escape a tragic death. While the mother bird is hatching the second brood the father keeps the first brood with him and cares for them; often the whole family remains together during the winter, making a small flock. However, the flocking habit is not characteristic of these birds, and we only see them in considerable numbers when the exigencies of seeking food in the winter naturally bring them together.

The cardinals are fond of the shrubbery and thickets of river bottoms, near grain fields, or where there is plenty of wild grass, and they only visit our premises when driven to us by winter hunger. Their food consists of the seeds of rank weeds, corn, wheat, rye, oats, beetles, grasshoppers, flies, and to some extent, wild and garden berries; but they never occur in sufficient numbers to be a menace to our crops. The cardinals may often be seen in the corn fields after the harvest, and will husk an overlooked ear of corn and crack the kernels with their beaks in a most dexterous manner. During the winter we may coax them to our grounds by scattering corn in some place not frequented by cats; thus, we may induce them to nest near us, since the cardinal is not naturally a migrant but likes to stay in one locality summer and winter. It has been known to come as far north as Boston and southern New York, but it is found in greatest numbers in our Southern States. Many nestlings were formerly taken, to ship in cages to Europe, but the National Association for Bird Protection has put a stop to this. In Ohio, no cardinal is allowed to be caged, and this same law should protect this beautiful bird in every Southern state, since it does not live long or happily in confinement. The cardinal's song is not at its best in a cage, but as the poet Naylor says:

"Along the dust-white river road,
The saucy redbird chirps and trills;
His liquid notes resound and rise
Until they meet the cloudless skies,
And echo o'er the distant hills."

LESSON XXXII

The Cardinal Grosbeak

Leading thought—The cardinal is the most brilliantly colored of all our birds and because of its color and song, it has been destroyed by thousands as cage birds. We should seek to preserve it as a beautiful ornament to our groves and grounds.
Methods—This work must be done by personal observation in the field. The field notes should be discussed in school. The effect of the whole lesson should be to stimulate an interest in protecting these beautiful birds. If possible, send for outline figures of the cardinal for the children to color; these outlines may be had at the cost of fifteen cents per dozen from the Audubon Society, 141 Broadway, New York City.

Observations—1. Do you know the cardinal? Why is it so called? 2. How many names do you know for this bird? 3. Is the cardinal as large as the robin? Is it graceful in shape or stout? 4. Is there any color except red upon it? If so, where? 5. What other vividly red birds have we and how can we distinguish them from the cardinal? 6. Describe the cardinal's crest and how it looks when lifted. Why do you think it lifts it? 7. Describe its beak as to color, shape and size. What work is such a heavy beak made for? 8. Is the cardinal's mate the same color as he? Describe the color of her head, back, wings, tail, breast. 9. Can you imitate the cardinal's song? What words do you think he seems to sing? Does his mate sing also? Is it usual for mother birds to sing? What other notes besides songs do you hear him utter? 10. Where does the cardinal usually build its nest? How high from the ground? Of what materials? Is it compact or bulky? How many eggs and what are their colors? 11. How does the father bird act while his mate is brooding? How does he help take care of the young in the nest? 12. How do the fledglings differ in color from their father? From their mother? Of what use to the young birds is their sober color? 13. What happens to the fledglings of the first brood while the mother is hatching the eggs of the second brood? 14. In what localities do you most often see the cardinals? Do you ever see them in flocks? 15. What is the food of the cardinals? What do they feed their nestlings? 16. How can you induce the cardinals to build near your home? 17. What do you know about the laws protecting the redbirds?

Supplementary reading—The Second Book of Birds, Miller, p. 83; True Bird Stories, Miller, p. 86; The Song of the Cardinal, Porter; Audubon Educational Leaflet No. 18.

"Upon the gray old forest's rim
I snuffed the crab-tree's sweet perfume;
And farther, where the light was dim, I saw the bloom
Of May apples, beneath the tent
Of umbrel leaves above them bent;
Where oft was shifting light and shade
The blue-eyed ivy wildly strayed;
The Solomon's seal, in graceful play,
Swung where the straggling sunlight lay
The same as when I earliers heard
The Cardinal bird."

—W. S. Gallagher.
O be called a goose should be considered most complimentary, for of all the birds the goose is probably the most intelligent. An observant lady who keeps geese on her farm assures me that no animal, not even dog or horse, has the intelligence of the goose. She says that these birds learn a lesson after a few repetitions, and surely her geese were patterns of obedience. While I was watching them one morning, they started for the brook via the corn field; she called to them sharply, "No, no, you mustn’t go that way!" They stopped and conferred; she spoke again and they waited, looking at her as if to make up their minds to this exercise of self-sacrifice; but when she spoke the third time they left the corn field and took the other path to the brook. She could bring her geese into their house at any time of day by calling to them, "Home, home!" As soon as they heard these words, they would start and not stop until the last one was housed.

In ancient Greece maidens made pets of geese; and often there was such a devotion between the bird and girl that when the latter died her statue with that of the goose was carved on her burial tablet. The loyalty of a pet goose came under the observation of Miss Ada Georgia. A lone gander was the special pet of a small boy in Elmira, N. Y., who took sole care of him. The bird obeyed commands like a dog but would never let his little master out of his sight if he could avoid it; occasionally he would appear in the school yard, where the pupils would tease him by pretending to attack his master at the risk of being whipped with his wings so severely that it was a test of bravery among the boys to so challenge him. His fidelity to his master was extreme; once when the boy...
was ill in bed, the bird wandered about the yard honking disconsolately and refused to eat; he was driven to the side of the house where his master could look from the window and he immediately cheered up, took his food and refused to leave his post beneath the window while the illness lasted.

The goose is a stately bird whether on land or water; its long legs give it good proportions when walking, and the neck being so much longer than that of the duck gives an appearance of grace and dignity. The duck on the other hand is beautiful only when on the water or on the wing; its short legs, placed far back and far out at the sides, make it a most ungraceful walker. The beak of the goose is harder in texture and is not flat like the duck’s; no wonder the bird was a favorite with the ancient Greeks for the high ridge from the beak to the forehead resembles much the famous Grecian nose. The plumage of geese is very beautiful and abundant and for this reason they are profitable domestic birds.

The “picking” occurs late in summer when the feathers are nearly ready to be molted; at this time the geese flap their wings often and set showers of loose feathers flying. A stocking or a bag is slipped over the bird’s head and she is turned breast side up, with her head firmly between the knees or under the arm of the picker. The tips of the feathers are seized with the fingers and come out easily; only the breast, the under parts and the feathers beneath the wings are plucked. Geese do not seem to suffer while being plucked except through the temporary inconvenience and ignominy of having their heads thrust into a bag; it hurts their dignity more than their bodies.

The wings of geese are very large and beautiful; although our domestic geese have lost their powers of flight to a great extent, yet they often stretch their wings and take little flying hops, teetering along as if they can scarcely keep to earth; this must surely be reminiscent of the old instinct for traveling in the skies. The tail of the goose is a half circle and is spread when flying; although it is short, it seems to be sufficiently long to act as a rudder. The legs of the goose are much longer than those of the duck; they are not set so far back toward the rear of the body, and, therefore, the goose is the much better runner of the two. The track made by the goose’s foot is a triangle with two scallops on one side made by the webs between the three front toes; the hind toe is placed high up; the foot and the unfeathered portion of the leg, protected by scales, are used as oars when the bird is swimming. When she swims forward rapidly, her feet extend out behind her and act on the principle of a propeller; but when swimming around in the pond she uses them at almost right angles to the body. Although they are such excellent oars they are also efficient on land; although when running, her body may waddle somewhat, her head and neck are held aloft in stately dignity.

The Toulouse are our common gray geese; the Embdens are pure white with orange bill and bright blue eyes. The African geese have a black head with a large black knob on the base of the bill; the neck is long, snakelike, light gray, with a dark stripe down the back; the wings and tail are dark gray; there is a dewlap at the throat. The brown Chinese geese have also a black beak and a black knob at the base of the bill. The neck is light brown with a dull yellowish stripe down the neck. The back is dark brown, breast, wings and tail grayish brown. The white Chinese are shaped like the brown Chinese but the knob and bill are orange and the eyes light blue.
The Habits of Geese

Geese are monogamous and are loyal to their mates. Old-fashioned people declare that they choose their mates on Saint Valentine’s Day, but this is probably a pretty myth; when once mated, the pair live together year after year until one dies; an interesting instance of this is one of the traditions in my own family. A fine pair of geese belonging to my pioneer grandfather had been mated for several years and had reared handsome families; but one spring a conceited young gander fell in love with the old goose, and as he was young and lusty, he whipped her legitimate lord and master and triumphantly carried her away, although she was manifestly disgusted with this change in her domestic fortunes. The old gander sulked and refused to be comforted by the blandishments of any young goose whatever. Later the old pair disappeared from the farmyard and the upstart gander was left wifeless. It was inferred that the old couple had run away with each other into the encompassing wilderness and much sympathy was felt for them because of this sacrifice of their lives for loyalty. However, this was misplaced sentiment, for later in the summer the happy pair was discovered in a distant “slashing” with a fine family of goslings and were all brought home in triumph. The old gander, while not able to cope with his rival, was still able to trounce any of the animal marauders which approached his home and family.

The goose lines her nest with down and the soft feathers which she plucks from her breast. The gander is very devoted to his goose while she is sitting; he talks to her in gentle tones and is fierce in her defence. The eggs are about twice as large as those of the hen and have the ends more rounded. The period of incubation is four weeks. The goslings are beautiful little creatures, covered with soft down, and have large, bright eyes. The parents give them most careful attention from the first. One family which I studied consisted of the parents and eighteen goslings. The mother was a splendid African bird; she walked with dignified step, her graceful neck assuming serpentine curves; and she always carried her beak “lifted,” which gave her an appearance of majestic haughtiness. The father was just a plebeian white gander, probably of Embden descent but he was a most efficient protector. The family always formed a procession in going to the creek, the majestic mother at the head, the goslings following her and the gander bringing up the rear to be sure there were no stragglers; if a gosling strayed away or fell behind, the male went after it, pushing it back into the family circle. When entering the coop at night he pushed the little ones in gently with his bill; when the goslings took their first swim both parents gently pushed them into the water, “rooted them in,” as the farmer said. Any attempt to take liberties with the brood was met with bristling anger and defiance on the part of the gander; the mistress of the farm told me that he had whipped her black and blue when she tried to interfere with the goslings.

The gander and goose always show suspicion and resentment by opening the mouth wide, making a hissing noise, showing the whole round tongue in mocking defiance. When the gander attacks, he thrusts his head forward, even with or below the level of his back, and seizes his victim firmly with his hard, toothed bill so that it cannot get away, and then with his strong wings beats the life out of it. I remember vividly a whipping
which a gander gave me when I was a child, holding me fast by the blouse while he laid on the blows.

Geese feed much more largely upon land vegetation than do ducks; a good growth of clover and grass make excellent pasture for them; in the water, they feed upon water plants but do not eat insects and animals to any extent.

Undoubtedly goose language is varied and expresses many things. Geese talk to each other and call from afar; they shriek in warning and in general make such a turmoil that people do not enjoy it. The goslings, even when almost grown, keep up a constant "pee wee, pee wee," which is nerve-racking. There is a good opportunity for some interesting investigations in studying out just what the different notes of the geese mean.

The goose is very particular about her toilet, she cleans her breast and back and beneath her wings with her bill, and she cleans her bill with her foot; she also cleans the top of her head with her foot and the under side of her wing with the foot of that side. When oiling her feathers, she starts the oil gland flowing with her beak, then rubs her head over the gland until it is well oiled; she then uses her head as a "dauber" to apply the oil to the feathers of her back and breast. When thus polishing her feathers, she twists the head over and over and back and forth to add to its efficiency.

WILD GEESE

HERE is a sound, that, to the weather-wise farmer, means cold and snow, even though it is heard through the hazy atmosphere of an Indian summer day; and that is the honking of wild geese as they pass on their southward journey. And there is not a more interesting sight anywhere in the autumn landscape than the wedge-shaped flock of these long-necked birds with their leader at the front apex. "The wild goose trails his harrow," sings the poet; but only the aged can remember the old-fashioned harrow which makes this simile graphic. The honking which reveals to us the passing flock, before our eyes can discern the birds against the sky, is the call of the wise old gander who is the leader, to those following him, and their return salute. He knows the way on this long thousand-mile journey, and knows it by the topography of the country. If ever fog or storm hides the earth from his view, he is likely to become confused, to the dismay of his flock, which follows him to the earth with many lonely and distressful cries.

The northern migration takes place in April and May, and the southern from October to December. The journey is made with stops for rest and refreshment at certain selected places, usually some secluded pond or lake. The food of wild geese consists of water plants, seeds and corn, and some of the smaller animals living in water. Although the geese come to rest on the water, they go to the shore to feed. In California, the wild geese are dreaded visitors of the cornfields, and men with guns are employed regularly to keep them off.

The nests are made of sticks lined with down, usually along the shores of streams, sometimes on tree stumps and sometimes in deserted nests of the osprey. There are only four or five eggs laid and both parents are
devoted to the young, the gander bravely defending his nest and family from the attacks of any enemies.

Although there are several species of wild geese on the Atlantic Coast, the one called by this name is usually the Canada goose. This bird is a superb creature, brown above and gray beneath, with head, neck, tail, bill and feet of black. These black trimmings are highly ornamental and, as if to emphasize them, there is a white crescent-shaped “bib” extending from just back of the eyes underneath the head. This white patch is very striking, and gives one the impression of a bandage for sore throat. It is regarded as a call-color, and is supposed to help keep the flock together; the side tail-coverts are also white and make another guide to follow.

Often some wounded or wearied bird of the migrating flock spends the winter in farmyards with domestic geese. One morning a neighbor of mine found that during the night a wild gander, injured in some way, had joined his flock. The stranger was treated with much courtesy by its new companions as well as by the farmer’s family and soon seemed perfectly at home. The next spring he mated with one of the domestic geese. In the late summer, my neighbor, mindful of wild geese habits, clipped the wings of the gander so that he would be unable to join any passing flock of his wild relatives. As the migrating season approached, the gander became very uneasy; not only was he uneasy and unhappy always but he insisted that his wife share his misery of unrest. He spent days in earnest remonstrance with her and, lifting himself by his cropped wings to the top of the barnyard fence, he insisted that she keep him company on this, for web feet, uneasy resting-place. Finally, after many days of tribulation,
the two valiantly started south on foot. News was received of their progress for some distance and then they were lost to us. During the winter our neighbor visited a friend living eighteen miles to the southward and found in his barnyard the errant pair. They had become tired of migrating by tramping and had joined the farmer's flock; but we were never able to determine the length of time required for this journey.

LESSON XXXIII

Geese

Leading thought—Geese are the most intelligent of the domesticated birds, and they have many interesting habits.

Method—This lesson should not be given unless there are geese where the pupils may observe them. The questions should be given a few at a time and answered individually by the pupils after the observations are made.

Observations—
1. What is the chief difference between the appearance of a goose and a duck? How does the beak of the goose differ from that of the duck in shape and in texture? Describe the nostrils and their situation.
2. What is the difference in shape between the neck of the goose and that of the duck?
3. What can you say about the plumage of geese? How are geese "picked?" At what time of year? From what parts of the body are the feathers plucked?
4. Are the wings of the goose large compared with the body? How do geese exercise their wings? Describe the tail of the goose and how it is used.
5. How do the legs and feet of the goose differ from those of the duck? Describe the goose’s foot. How many toes are webbed? Where is the other toe? What is the shape of the track made by the goose’s foot? Which portions of the legs are used for oars? When the goose is swimming forward where are her feet? When turning around how does she use them? Does the goose waddle when walking or running as a duck does? Why? Does a goose toe-in when walking? Why?
6. Describe the shape and color of the following breeds of domestic geese: The Toulouse, the Embden, the African, and Chinese.

Habits of Geese

1. What is the chief food of geese? What do they find in the water to eat? How does their food differ from that of ducks?
2. How do geese differ from hens in the matter of mating and nesting? At what time of year do geese mate? Does a pair usually remain mated for life?
3. Describe the nest and compare the eggs with those of hens. Describe the young goslings in general appearance. With what are they covered? What care do the parents give to their goslings? Describe how the parents take their family afield. How do they induce their goslings to go into the water for the first time? How do they protect them from enemies?
4. How does the gander or goose fight? What are the chief weapons? How is the head held when the attack is made?

5. How does the goose clean her feathers, wings and feet? How does she oil her feathers? Where does she get the oil and with what does she apply it?

6. How much of goose language do you understand? What is the note of alarm? How is defiance and distrust expressed? How does a goose look when hissing? What is the constant note of the gosling?

7. Give such instances as you may know illustrating the intelligence of geese, their loyalty and bravery.

8. Write an English Theme on "The Canada Goose, its appearance, nesting habits, and migrations."

Supplementary reading—Birds that Hunt and are Hunted, Blanchan; "In Quest of Waptonk The Wild," Northern Trails, Long; "The Homesickness of Kehonka," Kindred of the Wild, Roberts; Wild Geese, Celia Thaxter.
THE TURKEY

Teacher’s Story

Hat the turkey and not the eagle should have been chosen for our national bird, was the conviction of Benjamin Franklin. It is a native of our country, it is beautiful as to plumage, and like the American Indian, it has never yielded entirely to the influences of civilization. Through the hundreds of years of domestication it still retains many of its wild habits. In fact, it has many qualities in common with the red man. Take for instance its sun dance, which any one can witness who is willing to get up early enough in the morning and who has a flock of turkeys at hand. Miss Ada Georgia made a pilgrimage to witness this dance and she describes it thus: "While the dawn was still faint and gray, the long row of birds on the ridge-pole stood up, stretched legs and wings and flew down into the orchard beside the barnyard and began a curious, high-stepping, ‘flip-flop’ dance on the frosty grass. It consisted of little, awkward, up-and-down jumps, varied by forward springs of about a foot, with lifted wings. Both hens and males danced, the latter alternately strutting and hopping and all ‘singing,’ the hens calling ‘Quit, quit,’ the males accompanying with a high-keyed rattle, sounding like a hard wood stick drawn rapidly along a picket fence. As the sun came up and the sky brightened, the exhibition ended suddenly when ‘The Captain,’ a great thirty pound gobbler and leader of the flock, made a rush at one of his younger brethren who had dared to be spreading a tail too near to his majesty."
The bronze breed resembles most closely our native wild turkey and is therefore chosen for this lesson. The colors and markings of the plumage form the bronze turkey's chief beauty. From the skin of the neck, reaching half way to the middle of the back is a collar of glittering bronze with greenish and purple iridescence, each feather tipped with a narrow jet band. The remainder of the back is black except that each feather is edged with bronze. The breast is like the collar and at its center is a tassel of black bristles called the beard which hangs limply downward when the birds are feeding; but when the gobbler stiffens his muscles to strut, this beard is thrust proudly forth. Occasionally the hen turkeys have a beard. The long quills, or primaries, of the wings are barred across with bands of black and white; the secondaries are very dark, luminous brown, with narrower bars of white. Each feather of the fan-shaped tail is banded with black and brown and ends with a black bar tipped with white; the tail coverts are lighter brown but also have the black margin edged with white. The colors of the hen are like those of the gobbler except that the bronze brilliance of breast, neck and wings is dimmed by the faint line of white which tips each feather.

The heads of all are covered with a warty wrinkled skin, bluish white on the crown, grayish blue about the eyes, and the other parts red. Beneath the throat is a hanging fold called the wattle, and above the beak a fleshy pointed knob called the caruncle, which on the gobbler is prolonged so that it hangs over and below the beak. When the bird is angry these carunculated parts swell and grow more vivid in color, seeming to be gorged with blood. The color of the skin about the head is more extensive and brilliant in the gobblers than in the hens. The beak is slightly curved, short, stout, and sharp-pointed, yellowish at the tip and dark at the base.

The eyes are bright, dark hazel with a thin red line of iris. Just back of the eye is the ear, seemingly a mere hole, and yet it leads to a very efficient ear, upon which every smallest sound impinges.

The legs of the young turkeys are nearly black, fading to a brownish gray when mature. The legs and feet are large and stout, the middle toe of the three front ones being nearly twice the length of the one on either side; the hind toe is the shortest of the four. On the inner side of the gobbler's legs, about one-third the bare space above the foot, is a wicked looking spur which is a most effective weapon. The wings are large and powerful; the turkey flies well for such a large bird and usually roosts high, choosing trees or the ridge-pole of the barn for this purpose.

In many ways the turkeys are not more than half domesticated. They insistently prefer to spend their nights out of doors instead of under a roof. They are also great wanderers and thrive best when allowed to forage in the fields and woods for a part of their food.

The gobbler is the most vainglorious bird known to us; when he struts to show his flock of admiring hens how beautiful he is, he lowers his wings and spreads the stiff primary quills until their tips scrape the ground, lifting meanwhile into a semi-circular fan his beautiful tail feathers; he protrudes his chest, raises the iridescent plumage of his neck like a ruff to make a background against which he throws back his red, white and blue decorated head. He moves forward with slow and mincing steps and calls attention to his grandeur by a series of most aggressive "gobbles." But we must say for the gobbler that although he is vain he is also a brave
fighter. When beginning a fight he advances with wings lowered and sidewise as if guarding his body with the spread wing. The neck and the sharp beak are outstretched and he makes the attack so suddenly, that it is impossible to see whether he strikes with both wing and beak or only with the latter, as with fury he pounces upon his adversary apparently striving to rip his neck open with his spurs.

Turkey hens usually begin to lay in April in this latitude and much earlier in more southern states. At nesting time each turkey hen strays off alone, seeking the most secluded spot she can find to lay the large, oval, brown-speckled eggs. Silent and sly, she slips away to the place daily, by the most round-about ways, and never moving in the direction of the nest when she thinks herself observed. Sometimes the sight of any person near her nest will cause her to desert it. The writer has spent many hours when a child, sneaking in fence corners and behind stumps and tree trunks, stalking turkeys’ nests. Incubation takes four weeks. The female is a most persistent sitter and care should be taken to see that she gets a good supply of food and water at this time. Good sound corn or wheat is the best food for her at this period. When sitting she is very cross and will fight most courageously when molested on her nest.

Turkey nestlings are rather large, with long, bare legs and scrawny thin necks, and they are very delicate during the first six weeks of their lives. Their call is a plaintive “peep, weep,” and when a little turkey feels lost its cry is expressive of great fear and misery. But if the mother is freely ranging she does not seem to be much affected by the needs of her brood; she will fight savagely for them if they are near her, but if they stray, and they usually do, she does not seem to miss or hunt for them, but strides serenely on her way, keeping up a constant crooning “kr-rit, kr-rit,” to encourage them to follow. As a consequence, the chicks are lost or get draggled and chilled by struggling through wet grass and leaves, that are no obstacle to the mother’s strong legs, and thus many die. If the mother is confined in a coop it should be so large and roomy that she can move about without trampling on the chicks, and it should have a dry floor since dampness is fatal to the little ones.

For the first week the chicks should be fed five times a day, and for the next five weeks they should have three meals a day. They should be given just about enough to fill each little crop and none left over to be trodden under their awkward little feet. Their quarters should be kept clean and free from vermin.

LESSON XXXIV

Turkeys

Leading thought—The turkey is a native of America. It was introduced into Spain from Mexico in about 1518, and since then has been domesticated. However, there are still in some parts of the country flocks of wild turkeys. It is a beautiful bird and has interesting habits.

Method—If the pupils could visit a flock of turkeys the lesson would be given to a better advantage. If this is impossible, ask the questions a few at a time and let those pupils who have opportunities for observing the turkeys give their answers before the class.

Observations—1. Of what breed are the turkeys you are studying, Bronze, Black, Buff, White Holland or Narragansett?
2. What is the general shape and size of the turkey? Describe its plumage, noting every color which you can see in it? Does the plumage of the hen turkey differ from that of the gobbler?

3. What is the covering of the head of the turkey, what is its color and how far does it extend down the neck of the bird? Is it always the same color, and if not, what causes the change? Is the head covering alike in shape and size on the male and the female? What is the part called that hangs from the front of the throat below the beak? From above the beak?

4. What is the color of the beak? Is it short or long, straight or curved? Where are the nostrils situated?

5. What is the color of the turkey's eyes? Do you think it is a keen-sighted bird?

6. Where are the ears? Do they show as plainly as a chicken's ears do? Are turkeys quick of hearing?

7. Do turkeys scratch like hens? Are they good runners? Describe the feet and legs as to shape, size and color. Has the male a spur on his legs, and if so, where is it situated? For what is it used?

8. Can turkeys fly well? Are the wings small or comparatively large and strong for the weight of the body? Do turkeys prefer high or low places for perching when they sleep? Is it well to house and confine them in small buildings and parks as is done with other fowls?

9. Tell, as nearly as you can discover by close observation, how the gobbler sets each part of his plumage when he is "showing off" or strutting? What do you think is the bird's purpose in thus exhibiting his fine feathers? Does the "King of the flock" permit any such action by other "gobblers" in his company?

10. Are turkeys timid and cowardly or independent and brave, ready to meet and fight anything which they think is threatening to their comfort and safety?

11. When turkeys fight, what parts of their bodies seem to be used as weapons? Does the male "gobble" during a fight, or only as a challenge or in triumph when victorious? Do the hen turkeys ever fight, or only the males?

12. How early in the spring does the turkey hen begin to lay? Does she nest about the poultry yard and the barns or is she likely to seek some secret and distant spot where she may hide her eggs? Describe the turkey's egg, as well as you can, as to color, shape and size. Can one tell it by the taste from an ordinary hen's egg? About how many eggs does the turkey hen lay in her nest before she begins to "get broody" and want to sit?

13. How many days of incubation are required to hatch the turkey chick? Is it as downy and pretty as other little chicks? How often should the young chicks be fed, and what food do you think is best for them? Are turkey chicks as hardy as other chicks?

14. Is the turkey hen generally a good mother? Is she cross or gentle when sitting and when brooding her young? Is it possible to keep the mother turkey as closely confined with her brood as it is with the mother hen? What supplies should be given to her in the way of food, grits, dust-baths, etc.?

Supplementary reading—Birds that Hunt and are Hunted, Blanchan.
LESSON XXXV

The Study of Birds' Nests in Winter

There are very good reasons for not studying birds' nests in summer, since too much familiarity on the part of eager children is something the birds do not understand and are likely, in consequence, to abandon both nest and locality. But after the birds have gone to sunnier climes and the empty nests are the only mementos we have of them, then we may study these habitations carefully and learn how to properly appreciate the small architects which made them. I think that every one of us who carefully examines the way that a nest is made must have a feeling of respect for its clever little builder.

I know of certain schools where the children make large collections of these winter nests, properly labelling each, and thus gaining a new interest in the bird life of their locality. A nest when collected should be labelled in the following manner:

Name of the bird which built the nest.
Where the nest was found.
If in a tree, what kind?
How high from the ground?

Bird Homes, by A. R. Dugmore is a book which affords practical help in determining the species of birds which made the nests.

After a collection of nests has been made let the pupils study them according to the following outline:

1. Where was the nest found?
 a. If on the ground, describe the locality.
 b. If on a plant, tree or shrub, tell the species, if possible.
 c. If on a tree, tell where it was on a branch, in a fork, or hanging by the end of the twigs.
 d. How high from the ground, and what was the locality?
 e. If on or in a building, how situated?
2. Did the nest have any arrangement to protect it from rain?
3. Give the size of the nest, the diameter of the inside and the outside; also the depth of the inside.
4. What is the form of the nest? Are its sides flaring or straight?
5. Is the nest shaped like a cup, basket or pocket?
6. What materials compose the outside of the nest and how are they arranged?
7. Of what materials is the lining made, and how are they arranged? If hair or feathers are used, on what creature did they grow?
8. How are the materials of the nest held together, that is, are they woven, plastered, or held in place by environment?
9. Had the nest anything peculiar about it either in situation, construction or material that would tend to render it invisible to the casual glance?
"Noon time and June time down around the river."
II. FISH STUDY

"It remains yet unresolved whether the happiness of a man in this world doth consist more in contemplation or action. Concerning which two opinions I shall forebear to add a third by declaring my own, and rest myself contented in telling you that both of these meet together, and do most properly belong to the most honest, ingenious, quiet and harmless art of angling. And first I tell you what some have observed, and I have found to be a real truth, that the very sitting by the riverside is not only the quietest and the fittest place for contemplation, but will invite an angler to it."—Isaak Walton.

Dear, human, old Isaak Walton discovered that nature-study, fishing, and philosophy were akin and as inevitably related as the three angles of a triangle. And yet it is surprising how little the fish have been used as subjects for nature lessons. Every brook and pond is a treasure to the teacher who will find what there is in it and who knows what may be gotten out of it.

Luckily there are some very good books on fishes which will assist materially in making the fish lessons interesting: Fishes, by David Starr Jordan, is a magnificent popular work in two volumes; American Food and Game Fishes, by Jordan and Evermann, is one of the volumes of the valuable Nature Library. While for supplementary reading the following will prove instructive and entertaining: The Story of the Fishes, Baskett; Fish Stories, by Holder and Jordan; "The Story of a Salmon," in Science Sketches, by Jordan; Neighbors with Wings and Fins, Johonnot; Half Hours with Fishes, Reptiles and Birds, Holder.

Almost any of the fishes found in brook or pond may be kept in an aquarium for a few days of observation in the schoolroom. A water pail or bucket does very well if there is no glass aquarium. The water should be changed every day and at least once a day it should be aerated by dipping it up and pouring it back from some distance above. The practice should be established, once for all, of putting these finny prisoners back into the brook after they have been studied.

THE GOLDFISH

Teacher's Story

Once upon a time, if stories are true, there lived a king called Midas, whose touch turned everything to gold. Whenever I see goldfish, I wonder if, perhaps, King Midas were not a Chinese and if he perchance did not handle some of the little fish in Orient streams. But common man has learned a magic as wonderful as that of King Midas, although it does not act so immediately, for it is through his agency in selecting and breeding that we have gained these exquisite fish for our aquaria. In the streams of China the goldfish, which were the ancestors of these effulgent creatures, wore safe green colors like the shiners in our brooks; and if any goldfish escape from our fountains and run wild, their progeny return to their native olive-green color. There are many
such dull-colored goldfish in the Delaware and Potomac and other eastern rivers. It is almost inconceivable that one of the brilliant colored fishes, if it chanced to escape into our ponds, should escape the fate of being eaten by some larger fish attracted by such glittering bait.

The goldfish, as we see it in the aquarium, is brilliant orange above and pale lemon-yellow below; there are many specimens that are adorned with black patches. And as if this fish were bound to imitate the precious metals, there are individuals which are silver instead of gold: they are oxidized silver above and polished silver below. The goldfish are closely related to the carp and can live in waters that are stale. However, the water in the aquarium should be changed at least twice a week to keep it clear. Goldfish should not be fed too lavishly. An inch square of one of the sheets of prepared fish food, we have found a fair daily ration for five medium sized fish; these fish are more likely to die from overfeeding than from starving. Goldfish are naturally long-lived; Miss Ada Georgia has kept them until seven years old in a school aquarium; and there is on record one goldfish that lived nine years.

Too often the wonderful common things are never noticed because of their commonness; and there is no better instance of this than the form and movements of a fish. It is an animal in many ways similar to animals that live on land; but its form and structure are such that it is perfectly adapted to live in water all its life; there are none of the true fishes which live portions of their lives on land as do the frogs. The first peculiarity of the fish is its shape. Looked at from above, the broader part of the body is near the front end which is rounded or pointed so as to cut the water readily. The long, narrow, hind portion of the body with the tail acts as a propeller. Seen from the side, the body is a smooth, graceful oval and this form is especially adapted to move through the water swiftly, as can be demonstrated to the pupil by cutting a model of the fish from wood and trying to move it through the water sidewise.

Normally, the fish has seven fins, one along the back called the dorsal, one at the end of the tail called the tail or caudal fin, one beneath the rear end of the body called the anal, a pair on the lower side of the body called the ventrals, and a pair just back of the gill openings called the pectorals. All these fins play their own parts in the movements of the fish. The dor-

Goldfish with the parts named.
This figure should be copied on the blackboard for reference.
sal fin is usually higher in front than behind and can be lifted or shut down like a fan. This fin when it is lifted gives the fish greater height and it can be twisted to one side or the other and thus be made a factor in steering. The anal fin on the lower side acts in a similar manner. The tail fin is the propeller and sends the body forward by pressing backward on the water, first on one side and then on the other, being used like a scull. The tail fin varies in shape very much in different species. In the goldfish it is fanlike, with a deeply notched hind edge, but in some it is rounded or square.

The paired fins correspond anatomically to our arms and legs, the pectorals representing the arms, the ventrals the legs. Fins are made up of rays, as the bony rods are called which support the membrane; these rays are of two kinds, those which are soft, flexible, many jointed and usually branched at the tip; and those which are bony, not jointed and which are usually stiff spines. When the spines are present in a fin they precede the soft rays.

Fishes’ eyes have no eyelid but the eyeball is movable, and this often gives the impression that the fish winks. Fishes are necessarily near-sighted since the lens of the eye has to be spherical in order to see in the water. The sense of smell is located in a little sac to which the nostril leads; the nostrils are small and often partitioned and may be seen on either side of the snout. The nostrils have no connection whatever with breathing, in the fish.

The tongue of the fish is very bony or bristly and immovable. There is very little sense of taste developed in it. The shape, number and position of the teeth vary according to the food habits of the fish. The commonest type of teeth are fine, sharp and short and are arranged in pads, as seen in the bullhead. Some fish have blunt teeth suitable for crushing shells. Herbivorous fishes have sharp teeth with serrated edges, while those living upon crabs and snails have incisor-like teeth. In some specimens we find several types of teeth, in others the teeth may be entirely absent. The teeth are borne not only on the jaws but also in the roof of the mouth, on the tongue and in the throat.

The ear of the fish has neither outside form nor opening and is very imperfect in comparison with that of man. Extending along the sides of the body from head to tail is a line of modified scales containing small tubes connecting with nerves; this is called the lateral line and it is believed that it is in some way connected with the fish’s senses, perhaps with the sense of hearing.

Since fishes must push through water, which is more difficult than moving through air, they need to have the body well protected. This protection is, in most fishes, in the form of an armor of scales which are smooth and allow the body to pass through the water with little friction. These scales overlap like shingles in a roof and are all directed backward. The study of the fish scale shows that it grows in layers.

In order to understand how the fish breathes we must examine its gills. In front, just above the entrance to the gullet are several bony ridges which bear two rows of pinkish fringes; these are the gill arches and the fringes are the gills. The gills are filled with tiny blood vessels, and as the water passes over them, the impurities of the blood pass out through the thin skin of the gills and the life-giving oxygen passes in. Since fish cannot make use of air unless it is dissolved in water, it is very important
that the water in the aquarium jar should often be replenished. The gill arches also bear a series of bony processes called gill-rakers. Their function is to prevent the escape of food through the gills while it is being swallowed, and they vary in size according to the food habits of the fish. We note that the fish in the aquarium constantly opens and closes the mouth; this action draws the water into the throat and forces it out over the gills and through the gill openings; this then, is the act of breathing.

LESSON XXXVI

A Study of the Fish

Leading thought—A fish lives in the water where it must breathe, move and find its food. The water world is quite different from the air world and the fish have developed forms, senses and habits which fit them for life in the water.

Method—The goldfish is used as a subject for this lesson because it is so conveniently kept where the children may see it. However, a shiner or minnow would do as well.

Before the pupils begin the study, place the diagram shown on p. 150 on the blackboard, with all the parts labelled; thus the pupils will be able to learn the parts of the fish by consulting it, and not be compelled to commit them to memory arbitrarily. It would be well to associate the goldfish with a geography lesson on China.

Observations—1. Where do fishes live? Do any fishes ever live any part of their lives on land like the frogs? Could a salt-water fish live in fresh water, or vice versa?

2. What is the shape of a fish when seen from above? Where is the widest part? What is its shape seen from the side? Think if you can in how many ways the shape of the fish is adapted for moving swiftly through the water.

3. How many fins has the fish? Make a sketch of the goldfish with all its fins and name them from the diagram on the blackboard.

4. How many fins are there in all? Four of these fins are in pairs; where are they situated? What are they called? Which pair corresponds to our arms? Which to our legs?

5. Describe the pectoral fins. How are they used? Are they kept constantly moving? Do they move together or alternately? How are they used when the fish swims backwards?

6. How are the ventral fins used? How do they assist the fish when swimming?

7. Sketch a dorsal fin. How many spines has it? How many soft rays are there in it? What is the difference in structure between the stiff spines in the front of the dorsal fin and the rays in the hind portion? Of what use to the fish are these two different kinds of fin supports?

8. Sketch the anal fin. Has it any spines in front? How many rays has it? How is this fin used when the fish is swimming?

9. With what fin does the fish push itself through the water? Make a sketch of the tail. Note if it is square, rounded, or notched at the end. Are the rays of the tail fin spiny or soft in character?

10. Watch the goldfish swim and describe the action of all the fins while it is in motion. In what position are the fins when the fish is at rest?
11. What is the nature of the covering of the fish? Are the scales large or small? In which direction do they seem to overlap? Of what use to the fish is this scaly covering?

12. Can you see a line which extends from the upper part of the gill opening, along the side to the tail? This is called the lateral line. Do you think it is of any use to the fish?

13. Note carefully the eyes of the fish. Describe the pupil and the iris. Are the eyes placed so that the fish can see in all directions? Can they be moved so as to see better in any direction? Does the fish wink? Has it any eyelids? Do you know why fish are near-sighted?

14. Can you see the nostrils? Is there a little wartlike projection connected with the nostril? Do you think fishes breathe through their nostrils?

15. Describe the mouth of the fish. Does it open upward, downward, or directly in front? What sort of teeth have fish? How does the fish catch its prey? Does the lower or upper jaw move in the process of eating?

16. Is the mouth kept always in motion? Do you think the fish is swallowing water all the time? Do you know why it does this? Can you see a wide opening along the sides of the head behind the gill cover? Does the gill cover move with the movement of the mouth? How does a fish breathe?

17. What are the colors of the goldfish above and below? What would happen to our beautiful goldfish if they were put in a brook with other fish? Why could they not hide? Do you know what happens to the colors of the goldfish when they run wild in our streams and ponds?

18. Can you find in books or cumbiopendias where the goldfish came from? Are they gold and silver in color in the streams where they are native? Do you think that they had originally the long, slender, swallow tails which we see sometimes in goldfish? How have the beautiful colors and graceful forms of the gold and silver fishes been developed?

"I have my world, and so have you,
A tiny universe for two,
A bubble by the artist blown,
Scarce more fragile than our own,
Where you have all a whale could wish,
Happy as Eden's primal fish.
Manna is dropped you thrice a day
From some kind heaven not far away,
And still you snatch its softening crumbs,
Nor, more than we, think whence it comes.
No foil seems yours but to explore
Your cloistered realm from shore to shore;
Sometimes you trace its limits round,
Sometimes its limpid depths you sound,
Or hover motionless midway,
Like gold-red clouds at set of day;
Erelong you whirl with sudden whim
Off to your globe's most distant rim,
Where, greatened by the watery lens,
Methinks no dragon of the jaws
Flashed hunger scales against the sky,
Roused by Sir Bovis or Sir Guy;
And the one eye that meets my view,
Lidless and strangely larvating too,
Like that of conscience in the dark,
Seems to make me its single mark.
What a benignant lot is yours
That have an own All-out-of-doors,
No words to spell, no sums to do,
No Nepos and no parllyool
How happy you, without a thought
Of such cross things as Must and Ought—
I too the happiest of boys
To see and share your golden joys!"

THE BULLHEAD

Teacher’s Story

"The bull-head does usually dwell and hide himself in holes or amongst stones in clear water; and in very hot days will lie a long time very still and sun himself and will be easy to be seen on any flat stone or gravel; at which time he will suffer an angler to put a hook baited with a small worm very near into his mouth; and he never refuses to bite, nor indeed, to be caught with the worst of anglers." — ISAAC WALTON.

When one looks a bullhead in the face one is glad that it is not a real bull for its barbels give it an appearance quite fit for the making of a nightmare; and yet from the standpoint of the bullhead, how truly beautiful those fleshy feelers are! For without them how could it feel its way about searching for food in the mud where it lives? Two of these barbels stand straight up; the two largest ones stand out on each side of the mouth, and two pairs of short ones adorn the lower lip, the smallest pair at the middle.

As the fish moves about, it is easy to see that the large barbels at the side of the mouth are of the greatest use; it keeps them in a constantly advancing movement, feeling of everything it meets. The upper ones stand straight up, keeping watch for whatever news there may be from above; the two lower ones spread apart and follow rather than precede the fish, seeming to test what lies below. The upper and lower pairs seem to test things as they are, while the large side pair deal with what is going to be. The broad mouth seems to be formed for taking in all things eatable, for the bullhead lives on almost anything alive or dead that it discovers as it noses about in the mud. Nevertheless, it has its notions about its food for I have repeatedly seen one draw material into its mouth through its breathing motion and then spew it out with a vehemence one would hardly expect from such a phlegmatic fish.
Although it has feelers which are very efficient, it also has perfectly good eyes which it uses to excellent purpose; note how promptly it moves to the other side of the aquarium when we are trying to study it. The eyes are not large; the pupils are black and oval and are rimmed with a narrow band of shiny pale yellow. The eyes are prominent so that when moved backward and forward they gain a view of the enemy in the rear or at the front while the head is motionless. It seems strange to see such a pair of pale yellow, almost white eyes in such a dark body.

The general shape of the front part of the body is flat, in fact, it is decidedly polywogy; this shape is especially fitted for groping about muddy bottoms. The flat effect of the body is emphasized by the gill covers opening below rather than at the sides, every pulsation widening the broad neck. The pectoral fins also open out on the same plane as the body although they can be turned at an angle if necessary; they are thick and fleshy and the sharp tips of their spines offer punishment to whomsoever touches them. The dorsal fin is far forward and not large; it is usually raised at a threatening angle.

There is a little fleshy dorsal fin near the tail which stands in line with the body and one wonders what is its special use. The ventral fins are small. The anal fin is far back and rather strong, and this with the long, strong tail gives the fish good motor power and it can swim very rapidly if occasion requires.

The bullhead is mud-colored and has no scales; and since it lives in the mud, it does not need scales to protect it; but because of its scaleless condition it is a constant victim of the lampreys, and it would do well, indeed, if it could develop an armor of scales against this parasite. The
skin is very thick and leathery so that it is always removed before the fish is cooked. The bullhead is the earliest fish of the spring. This is probably because it burrows deep into the mud in the fall and remains there all winter; when the spring freshets come, it emerges and is hungry for fresh meat.

The family life of the bullheads and other catfishes seems to be quite ideal. Dr. Theodore Gill tells us that bullheads make their nests by removing stones and gravel from a more or less irregularly circular area in shallow water, and on sandy or gravelly ground. The nest is somewhat excavated, both parents removing the pebbles by sucking them into the mouth and carrying them off for some distance. After the eggs are laid, the male watches over and guards the nest and seems to have great family responsibilities. He is the more active of the two in stirring and mixing the young fry after they are hatched. Smith and Harron describe the process thus: "With their chins on the bottom, the old fish brush the corners where the fry were banked, and with the barbels all directed forward, and flexed where they touch the bottom, thoroughly agitate the mass of fry, bringing the deepest individuals to the surface. This act is usually repeated several times in quick succession."

"The nests are usually made beneath logs or other protecting objects and in shallow water. The paternal care is continued for many days after the birth of the young. At first these may be crowded together in a dense mass, but as time passes they disperse more and more and spread around the father. Frequently, especially when the old one is feeding, some—one or more—of the young are taken into the mouth, but they are instinctively separated from the food and spit out. At last the young swarm venture farther from their birthplace, or perhaps they are led away by their parents."

LESSON XXXVII

The Bullhead, or Horned Pout

Leading thought—The bullhead lives in mud bottoms of streams and ponds and is particularly adapted for life in such locations.

Method—A small bullhead may be placed in a small aquarium jar. At first let the water be clear and add a little pond weed so as to observe the natural tendency of the fish to hide. Later add mud and gravel to the aquarium and note the behavior of the fish.

Observations—1. What at the first glance distinguishes the bullhead from other fish? Describe these strange "whiskers" growing about the mouth; how many are there and where are they situated? Which are the longest pair? Can the fish move them in any direction at will?

2. Where do we find bullheads? On what do they feed? Would their eyes help them to find their food in the mud? How do they find it?

3. Explain, if you can, why the bullhead has barbels, or feelers, while the trout and bass have none.

4. What is the shape of the bullhead's mouth?

5. What is the general shape of the body? What is its color? Has it any scales?

6. Why should the bullhead be so flat horizontally while the sunfish is so flat in the opposite direction?
7. Describe the bullhead’s eyes. Are they large? What is their color? Where are they placed?
8. Describe the dorsal fin, giving its comparative size and position. Do you see another dorsal fin? Where is this peculiar fin and how does it differ from the others?
9. Describe the tail fin. Does it seem long and strong? Is the bullhead a good swimmer?
10. Is the anal fin large or small as compared with that of the goldfish?
11. How do the pectoral fins move as compared with those of the sunfish? Why is the position of the pectoral and dorsal fins of benefit to this fish?
12. How does the bullhead inflict wounds when it is handled? Tell how these spines protect it from its natural enemies.
13. When is the best season for fishing for bullheads? Does the place where they are found affect the flavor of their flesh? Why?
14. What is the spawning season? Do you know about the nests the bullheads build and the care they give their young?
15. Write an essay on the nest-making habits of the bullheads and the care given the young by the parents.

"And what fish will the natural boy naturally take? In America, there is but one fish which enters jolly into the spirit of the occasion. It is a fish of many species according to the part of the country, and of as many sizes as there are sizes of boys. This fish is the horned pout, and all the rest of the species of Ameturus. Horned pout is its Boston name. Bullhead is good enough for New York; and for the rest of the country, big and little, all the fishes of this tribe are called catfish. A catfish is a jolly blundering sort of a fish, a regular Falstaff of the ponds. It has a fat pout, and a jolly belly, which it is always trying to fill. Smooth and sleek, its skin is almost human in its delicacy. It wears a long mustache, with scattering whiskers of other sort. Meanwhile it always goes armed with a sword, three swords, and these it has always on hand, always ready for a struggle on land as well as in the water. The small boy often gets badly stuck on these poisoned daggers, but, as the fish knows how to set them by a muscular twist, the small boy learns how, by a like untwist, he may unset and leave them harmless.

The catfish lives in sluggish waters. It loves the millpond best of all, and it has no foolish dread of hooks when it goes forth to bite. Its mouth is wide. It swallows the hook, and very soon it is in the air, its white throat gasping in the untried element. Soon it joins its fellows on the forked stick, and even then, uncomfortable as it may find its new relations, it never loses sight of the humor of the occasion. Its large head and expansive forehead betoken a large mind. It is the only fish whose brain contains a Sylvian fissure, a piling up of tissue consequent on the abundance of gray matter. So it understands and makes no complaint. After it has dried in the sun for an hour, pour a little water over its gills, and it will wag its tail, and squeak with gratitude. And the best of all is, there are horned pouts enough to go around."

"The female horned pout lays thousands of eggs, and when these hatch, she goes about near the shore with her school of little fishes, like a hen with myriad chicks. She should be respected and let alone, for on her success in rearing this breed of "bullying little rangers" depends the sport of the small boy of the future."

—David Starr Jordan, in Fish Stories.
THE COMMON SUCKER

Teacher's Story

He who loves to peer down into the depths of still waters, often sees upon the sandy, muddy or rocky bottom several long, wedge-shaped sticks lying at various angles one to another. But if he thrust down a real stick, behold, these inert, water-logged sticks move off deftly! And then he knows that they are suckers. He may drop a hook baited with a worm in front of the nose of one, and if he waits long enough before he pulls up he may catch this fish, not by its gills but by the pit of its stomach; for it not only swallows the hook completely but tries to digest it along with the worm. Its food is made up of soft-bodied insects and other small water creatures; it is also a mud eater and manages to make a digestive selection from the organic material of silt. For this latter reason, it is not a desirable food fish although its flesh varies in flavor with the locality where it is found. The suckers taken along the rocky shores of Cayuga Lake are fairly palatable, while those taken in the mud of the Cayuga Inlet are very inferior in flavor and often uneatable.

Seen from above, the sucker is wedge-shaped, being widest at the eyes; seen from the side it has a flat lower surface and an ungracefully rounded contour above which tapers only slightly toward the tail. The profile of the face gives the impression of a Roman nose. The young specimens have an irregular scale-mosaic pattern of olive-green blotches on a paler ground color, while the old ones are quite brown above and on the sides. The suckers differ from most other fishes in having the markings of the back extend down the sides almost to the belly. This is a help in concealing the fish, since its sides show from above quite as distinctly as its back
because of its peculiar form. The scales are rather large and are noticeably larger behind than in the region of the head. Like other fish it is white below.

The dorsal fin is placed about midway the length of the fish as measured from nose to tail. It is not large and appears to have twelve rays, but there is a short spine in front and a delicate soft ray behind so that it really has fourteen. The tail is long and strong and deeply notched; the anal fin extends back to where the tail begins. The ventral fins are small and are directly opposite the hind half of the dorsal fin. The pectorals are not large but are strong and are placed low down. The sucker has not a lavish equipment of fins but its tail is strong and it can swim swiftly; it is also a tremendous jumper: it will jump from the aquarium more successfully than any other fish. When resting on the bottom, it is supported by its extended pectoral and ventral fins, which are strong although not large.

The eyes are fairly large but the iris is not shiny; they are placed so that the fish can easily see above it as well as at the sides; the eyes move so as to look up or down and are very well adapted to serve a fish that lives upon the bottom. The nostrils are divided, the partition projecting until it seems a tubercle on the face. The mouth opens below and looks like the puckered opening of a bag. The lips are thick but are very sensitive; it is by projecting these lips, in a way that reminds one of a very short elephant's trunk, that it is enabled to reach and find its food in the mud or gravel; so although the sucker's mouth is not a beautiful feature, it is doubly useful. The sucker has the habit of remaining motionless for long periods of time. It breathes very slowly and appears sluggish; it never seizes its food with any spirit but simply slowly engulfs it; and for this reason it is considered poor game. It is only in the spring when they may be speared through the ice that there is any fun in catching suckers; it is at this season of the year that they move to shallow water to spawn; those in the lakes move to the rivers, those in the rivers to the creeks, those in the creeks to the brooks. Even so lowly a creature as the sucker seems to respond to influences of the springtime, for at that period the male has a faint rosy stripe along his sides. In the winter these fish burrow in the mud of the river or pond bottoms; they may be frozen and thawed without harming them.

There are many species of suckers and they vary in size from six inches to three feet in length. They inhabit all sorts of waters, but they do not like a strong current and are, therefore, found in still pools. The common sucker (*Catostomus commersoni*), which is the subject of thisesson, sometimes attains the length of twenty-two inches and the weight of five pounds. The ones under observation were about eight inches long, and proved to be the acrobats of the aquarium, since they were likely at any moment to jump out; several times I found one languishing on the floor.
LESSON XXXVIII

THE COMMON SUCKER

Leading thought—The sucker is especially adapted by shape for lying on the bottom of ponds under still water where its food is abundant.

Method—If still water pools along river or lakesides are accessible, it is far more interesting to study a sucker in its native haunts, as an introduction to the study of its form and colors when it is in the aquarium.

Observations—1. Where do you find suckers? How do you catch them? Do they take the hook quickly? What is the natural food of the sucker?

2. What is the shape of this fish’s body when seen from above? From the side? What is the color above? On the sides? Below? Does the sucker differ from most other fishes in the coloring along its sides? What is the reason for this? What do suckers look like on the bottom of the pond? Are they easily seen?

3. Describe or sketch a sucker, showing the position, size and shape of the fins and tail. Are its scales large or small? How does it use its fins when at rest? When moving? Is it a strong swimmer? Is it a high jumper?

4. Describe the eyes; how are they especially adapted in position and in movement to the needs of a fish that lives on the bottom of streams and ponds?

5. Note the nostrils; what is there peculiar about them?

6. Where is the mouth of the sucker situated? What is its form? How is it adapted to get the food which the sucker likes best?

7. Tell all you know about the habits of the suckers. When do you see them first in the spring? Where do they spend the winter? Where do they go to spawn? How large is the largest one you have ever seen? Why is their flesh usually considered poor in quality as food? Is there a difference in the flavor of its flesh depending upon the locality in which the fish lives? Why?

The common sucker.
"I'm only wishing to go a fishing."

THE SHINER

Teacher's Story

"This is a noteworthy and characteristic lineament, or cipher, or hieroglyphic, or type of spring. You look into some clear, sandy bottomed brook where it spreads into a deeper bay, yet flowing cold from ice and snow not far off, and see indistinctly poised over the sand on invisible fins, the outlines of the shiner, scarcely to be distinguished from the sands behind it as if it were transparent."—Thoreau.

Here are many species of shiners and it is by no means easy to recognize them nor to distinguish them from chub, dace and minnows since all these belong to one family; they all have the same arrangement of fins and live in the same water; and the plan of this lesson can with few changes be applied to any of them.

Never were seen more exquisite colors than shimmer along the sides of the common shiner (Notropis cornutus). It is pale olive-green above, just a sunny brook-color, this is bordered at the sides by a line of iridescent blue-purple, while the shining silver scales on the sides below, flash and glimmer with the changing hues of the rainbow. The minnows are darker than the shiners; the horned dace develops little tubercles on the head during the breeding season, which are lost later.

The body of the shiner is ideal for slipping through the water. Seen from above it is a narrow wedge, rounded in front and tapering to a point behind; from the side, it is long, oval, lance-shaped. The scales are large
and beautiful, the lateral line looks like a series of dots embroidered at the center of the diamond-shaped scales.

The dorsal fin is placed just back of the center of the body and is not very large; it is composed of soft rays, the first two being stiff and unbranched. The tail is long, large, graceful and deeply notched. The anal fin is almost as large as the dorsal. The ventral pair is placed on the lower side, opposite the dorsal fin; the pectorals are set at the lower margin of the body, just behind the gill openings. The shiner and its relatives use the pectoral fins to aid in swimming, and keep them constantly in motion when moving through the water. The ventrals are moved only now and then and evidently help in keeping the balance. When the fish moves rapidly forward, the dorsal fin is raised so that its front edge stands at right angles to the body and the ventral and anal fins are expanded to their fullest extent. But when the fish is lounging, the dorsal, anal and ventral fins are more or less closed, although the tip of the dorsal fin swings with every movement of the fish.

The eyes are large, the pupils being very large and black; the iris is pale yellow and shining; the whole eye is capable of much movement forward and back. The nostril is divided by a little projecting partition which looks like a tubercle. The mouth is at the front of the head; to see the capabilities of this mouth, watch the shiner yawn, if the water of the aquarium becomes stale. Poor fellow! He yawns just as we do in the effort to get more oxygen.

The shiners are essentially brook fish although they may be found in larger bodies of water. They lead a precarious existence, for the larger fish eat them in all their stages. They only hold their own by laying countless numbers of eggs. They feed on water insects and get even with their big fish enemies by eating their eggs. They are pretty and graceful little creatures and may be seen swimming up the current in the middle of the brook. They often occur in schools or flocks, especially when young.

The common shiner.
LESSON XXXIX
THE SHINER

Leading thought—The shiners are among the most common of the little fish in our small streams. They are beautiful in form and play an important part in the life of our streams.

Method—Place in the aquarium shiners and as many as possible of the other species of small fish found in our creeks and brooks. The aquarium should stand where the pupil may see it often. The following questions may be asked, giving the children plenty of time for the work of observation:

Observations—1. Do you know how the shiner differs in appearance from the minnow and chub and dace?
2. What is the shape of the shiner’s body when seen from above? When seen from the side? Do you think that its shape fits it for moving rapidly through the water?
3. What is the coloring above? On the sides? Below?
4. Are the scales large and distinct, or very small? Can you see the lateral line? Where are the tiny holes, which make this line, placed in the scales?
5. Describe or sketch the fish, showing position, relative size and shape of all the fins and the tail.
6. Describe the use and movements of each of the fins when the fish is swimming.
7. Describe the eyes. Do they move?
8. Describe the nostrils. Do you think each one is double?
9. Does the mouth open upwards, downwards or forwards? Have you ever seen the shiner yawn? Why does it yawn? Why do you yawn?
10. Where do you find the shiners living? Do they haunt the middle of the stream or the edges? Do you ever see them in flocks or schools?

MINNOWS

How silent comes the water round that bend;
Not the minutest whisper does it send
To the o’er hanging sallows; blades of grass
Slowly across the chequer’d shadows pass,
Why, you might read two sonnets, ere they reach
To where the hurrying freshnesses aye preach
A natural sermon o’er their pebbly beds;
Where swarms of minnows show their little heads,
Staying their wavy bodies ’gainst the streams,
To taste the luxury of sunny beams
Tempered with coolness. How they ever wrestle
With their own sweet delight, and ever nestle
Their silver bellies on the pebbly sand!
If you but scantily hold out the hand,
That very instant not one will remain;
But turn your eye, and there they are again.
The ripples seem right glad to reach those cresses,
And cool themselves among the em’rald tresses;
The while they cool themselves, they freshness give,
And moisture, that the bowery green may live.

—John Keats.
THE BROOK TROUT

Teacher's Story

"Up and down the brook I ran, where beneath the banks so steep,
Lie the spotted trout asleep."—Whittier.

But they were probably not asleep as Mr. Whittier might have observed if he had cast a fly near one of them. There is in the very haunts of the trout, a suggestion of where it gets its vigor and wariness: The cold, clear streams where the water is pure, brooks that wind in and out over rocky and pebbly beds, here shaded by trees and there dashing through the open,—it makes us feel vigorous even to think of such streams. Under the overhanging bank or in the shade of some fallen log or shelving rock, the brook trout hides where he may see all that goes on in the world above and around him without being himself seen. Woe to the unfortunate insect that falls upon the surface of the water in his vicinity or even that flies low over the surface for the trout will jump easily far out of the water to seize its prey! It is this habit of taking the insect upon and above the water's surface which has made trout fly-fishing the sport that it is. Man's ingenuity is fairly matched against the trout's cunning in this contest. I know of one old trout that has kept fishermen in the region around on the qui vive for years; and up to date he is still alive, making a dash now and then at a tempting bait, showing himself enough to tantalize his would-be captors with his splendid size, but always retiring at the sight of the line.

The brook trout varies much in color, depending upon the soil and the rocks of the streams in which it lives. Its back is marbled with dark olive or black, making it just the color of shaded water. This marbled coloration also marks the dorsal and the tail fins. The sides, which vary much in color, are marked with beautiful vermilion spots, each placed in the center of a larger, brownish spot. In some instances the lower surface

A speckled trout on a brook bottom.

Photo by Verne Morton.
Fish Study

is reddish, in others whitish. All the fins on the lower side of the body have the front edges creamy or yellowish white, with a darker streak behind.

The trout’s head is quite large and somewhat blunt. The large eye is a little in front of the middle of the head. The dorsal fin is at about the middle of the body, and when raised is squarish in outline. Behind the dorsal fin, and near to the tail is the little, fleshy adipose fin, so called because it has no rays. The tail is fan-shaped, slightly notched at the end and is large and strong. The anal fin is rather large, being shaped much like the dorsal fin, only slightly smaller. The ventral fins are directly below the dorsal fin and a little behind its middle. The pectorals are low down, being below and just behind the gill arches.

Where the trout hide.

In size the brook trout seldom is longer than seven or eight inches, but in the rivers of the Northeastern United States specimens weighing from six to eleven pounds are sometimes taken. It does not flourish in water which is warmer than 68°, but prefers a temperature of about 50°. It must have the pure water of mountain streams and cannot endure water of rivers which is polluted by mills or the refuse of cities. Where it has access to streams that flow into the ocean, it forms the salt water habit, going out to sea and remaining there during the winter. Such specimens become very large.

The trout can lay eggs when about six inches in length. The eggs are laid from September until late November, although, as Mr. Bream says, the brook trout are spawned at some locality in almost every month of the year except mid-summer. One mother trout lays from 400 to 600 eggs, but the large-sized ones lay more. The period of hatching depends upon the temperature of the water. In depositing their eggs the trout seek water with gravelly bottom, often where some mountain brook opens into
a larger stream. The nest is shaped by the tail of the fish, the larger stones being carried away in the mouth. To make the precious eggs secure they are covered with gravel.

There have been strict laws enacted by almost all of our states with a view to protecting the brook trout and preserving it in our streams. The open season in New York is from the 15th of April to the 1st of September, and it is illegal to take from a stream a fish that is less than five inches in length. It is the duty of every decent citizen to abide by these laws and to see to it that his neighbors observe them. The teacher cannot emphasize enough upon the child the moral value of being law-abiding. There should be in every school in the Union children’s clubs which should have for their purpose civic honesty and the enforcement of laws which affect the city, village or township.

Almost any stream with suitable water may be stocked with trout from the national or the state hatcheries, but what is the use of this expense if the game laws are not observed and these fish are caught before they reach maturity, as is so often the case?

References—American Food and Game Fishes, Jordan & Everman; Guide to American Fishes, Jordan.

LESSON XL

The Brook Trout

Leading thought—The brook trout have been exterminated in our streams largely because the game laws have not been observed. The trout is the most cunning and beautiful of our common fishes and the most valuable for food. If properly guarded, every pure mountain stream in our country, could be well stocked with the brook trout.

Method—A trout may be kept in an aquarium of flowing water indefinitely and should be fed upon liver and hard clams chopped. If there is no aquarium with running water, the trout may be kept in an ordinary jar long enough for this lesson. The object of this lesson should be not only the study of the habits of the fish, but also a lesson in its preservation.

Observations—1. In what streams are the brook trout found? Must the water be warm or cold? Can the trout live in impure water? Can it live in salt water?

2. Do the trout swim about in schools or do they live solitary? Where do they like to hide?

3. With what kind of bait is trout caught? Why does it afford such excellent sport for fly-fishing? Can you tell what the food of the trout is?

4. What is the color of the trout above? What colors along its sides? What markings make the fish so beautiful? What is its color below? Has the trout scales? Do you see the lateral line?

5. What is the general shape of the brook trout? Describe the shape, position and color of the dorsal fin. Describe the little fin behind the dorsal. Why is it unlike the other fins? What is the shape of the tail fin? Is it rounded, square or crescent-shaped across the end? What is the position and size of the anal fin compared with the dorsal? What colors on the ventral fins and where are they placed in relation to the
dorsal fin? What color are the pectoral fins and how are they placed in relation to the gill arches?
6. Describe the trout's eyes. Are they large and alert? Do you think the trout is keen-sighted?
7. When and where are the eggs laid? Describe how the nest is made. How are the eggs covered and protected?
8. Why are there no trout in the streams of your neighborhood? Could a trout live in these streams? Can you get state aid in stocking the streams?
9. What are the game laws concerning trout fishing? When is the open season? How long must the trout be to be taken legally? If you are a good citizen what do you do about the game laws?
10. Write a story telling all you know about the wariness, cunning and strength of the brook trout.

TROUT

“It is well for anglers not to make trout, of all fishes, the prime objective of a day's sport, as no more uncertain game loves the sunlight. Today he is yours for the very asking, tomorrow, the most luscious lure will not tempt him. One hour he defies you, the next, gazes at you from some ensconcence of the fishes, and knows you not, as you pass him, casting, by.

I believe I accumulated some of this angling wisdom years ago, in a certain trout domain in New England, where there were streams and pools, ripples, cascades and drooping trees, where everything was fair and promising to the eyes for trout; but it required superhuman patience to lure them, and many a day I scored a blank. Yet on these very days when lures were unavailing, the creel empty save for fern leaves, I found they were not for naught; that the real fishing day was a composite of the weather, the wind, even if it was from the east, the splendid colors of forest trees, the blue tournaiine of the sky that topped the stream amid the trees, the flecks of cloud mirrored on the surface. The delight of anticipation, the casting, the play of the rod, the exercise of skill, the quick turns in the steam opening up new visulas, the little openings in the forest, through which were seen distant meadows and nodding flowers—all these went to make up the real trout fishing, the actual catch being but an incident among many delights.

Just how long one could be content with mere scenery in lieu of trout, I am not prepared to say, if pushed to the wall, I confess that when fishing I prefer trout to scenic effects. Still, it is a very impracticable and delightful sentiment with some truth to it, the moral being that the angler should be resourceful, and not be entirely cast down on the days when the wind is in the east.

I am aware that this method of angling is not in vogue with some, and would be deemed fanciful, indeed vain, by many more; yet it is based upon a true and homely philosophy, not of today, the philosophy of patience and contentment. “How poor are they that have not patience,” said Othello. “It is well to be content with things as we find them, and it is well to go a-fishing, not to catch fish alone, but every offering the day has to give. This should be an easy matter for the angler, as Walton tells us that Angling is somewhat like poetry, men are to be born so”

—Fish Stories, Jordan and Holder.
THE STICKLEBACK

Teacher's Story

THIS is certainly the most sagacious of the Lilliputian vertebrates; scarcely more than an inch in length when full-grown, it gazes at you with large, keen, shining-rimmed eyes, takes your measure and darts off with a flirt of the tail that says plainly, "Catch me if you can." The sticklebacks are delightful aquarium pets because their natural home is in still water sufficiently stagnant for algae to grow luxuriously; thus we but seldom need to change the water in the aquarium, which, however, should be well stocked with water plants and have gravel at the bottom.

When the stickleback is not resting he is always going somewhere and he knows just where he is going and what he is going to do, and earthquakes shall not deter him. He is the most dynamic creature in all creation, I think, except perhaps the dragon fly, and he is so ferocious that if he were as large as a shark he would destroy all other fishes. Place an earthworm, cut into small sections, in the aquarium and while each section is wrigglingly considering whether it may be able to grow both ends into another worm, the stickleback takes hold with a will and settles the matter in the negative. His ferocity is frightful to behold as he seizes his prey and shakes it as a terrier does a rat.

Well is this fish named stickleback, for along the ridge of its back are sharp, strong spines—five of them in our tiny, brook species. These spines may be laid back flat or they may be erected stiffly, making an efficient saw which does great damage to fish many times larger than the stickleback. When we find the minnows in the aquarium losing their scales we may be sure they are being raked off by this saw-back; and if the shiner or sunfish undertakes to make a stickleback meal, there is only one way to do it, and that is to catch the quarry by the tail, since he is too alert to be caught in any other way. But swallowing a stickleback tail first is a dangerous performance, for the sharp spines rip open the throat or stomach of the captor. Dr. Jordan says that the sticklebacks of the Puget Sound region are called "salmon killers" and that they well earn the name; these fierce midgets unhesitatingly attack the salmon, biting off pieces of their fins and also destroying their spawn.

As seen from the side, the stickleback is slender and graceful, pointed like an arrow at the front end, and with the body behind the dorsal fin forming a long and slender pedicel to support the beautifully rounded tail fin. The dorsal fin is placed well back and is triangular in shape; the anal fin makes a similar triangle opposite it below and has a sharp spine at its front edge. The color of the body varies with the light; when floating among the water weed the back is greenish mottled with paler green, but when the fish is down on the gravel it is much darker. The lateral line is marked by a rather broad silver stripe.
If large eyes count for beauty, then the stickleback deserves "the apple," for its eyes are not only large but gemlike, with a broad iris of golden brown around the black pupil. I am convinced that the stickleback has a keener vision than most fish; it can move its eyes backward and forward rapidly and alertly. The mouth opens almost upward and is a wicked little mouth, both in appearance and action.

When swimming, the stickleback darts about rapidly, its dorsal and anal fins extended, its spines all abristle, its tail lashing the water with strong strokes and the pectorals flying so fast that they make a blur; the ventral fins are rarely extended, in fact they are nothing but two little spines. When the fish wishes to lift itself through the water it seems to depend entirely upon its pectoral fins and these are also used for balancing. Its favorite position is hanging motionless among the pond weeds, with the tail, the dorsal and ventral fins partially closed; it usually rests upon the pectoral fins which are braced against some stem; in one case I saw the ventrals and pectorals used together to clasp a stem and hold the fish in place. In moving backward the pectorals do the work, with a little beckoning motion of the tail occasionally. When resting upon the bottom of the aquarium, it closes its fins and makes itself quite inconsiderable. It can dig with much power accomplishing this by a comical augerlike motion; it plunges head first into the gravel and then by twisting the body and tail around and around, it soon forms a hiding place.

But it is as a house builder and father and home protector that the stickleback shines. In the early spring he builds him a nest made from the fine green algae called frog-spittle. This would seem a too delicate material for the house construction, but he is a clever builder. He fastens his filmy walls to some stems of reed or grass, using as a platform a supporting stem; the ones which I have especially studied were fastened to grass stems. The stickleback has a little cement plant of his own, supposed to be situated in the kidneys, which at this time of year secrete the glue for building purposes. The glue is waterproof. It is spun out in fine threads or in filmy masses through an opening near the anal fin. One species weights his platform with sand which he scoops up from the bottom, but I cannot detect that our brook stickleback does this. In his case, home is his sphere literally, for he builds a spherical house about the size of a glass marble, three-quarters of an inch in diameter; it is a hollow sphere and he cements the inside walls so as to hold them back and give room, and he finishes his pretty structure with a circular door at the side. When finished, the nest is like a bubble, made of threads of down and yet it holds together strongly.

In the case of the best known species, the male, as soon as he has finished his bower to his satisfaction, goes a-wooing; he selects some lady stickleback, and in his own way tells her of the beautiful nest he has made and convinces her of his ability to take care of a family. He certainly has fetching ways for he soon conducts her to his home. She enters the nest through the little circular door, lays her eggs within it, and then being a flighty creature, she sheds responsibilities and flits off care free. He follows her into the nest, scatters the fertilizing milt over the eggs and then starts off again and rolls his golden eyes on some other lady stickleback and invites her also to his home; she comes without any jealousy because she was not first choice, and she also enters the nest and lays her
eggs and then swims off unconcernedly. Again he enters the nest and drops more milt upon the eggs and then fares forth again, a still energetic wooer. If there was ever a justified polygamist, he is one, since it is only the cares and responsibilities of the home that he desires. He only stops wooing when his nest holds as many eggs as he feels equal to caring for. He now stands on guard by the door, and with his winnowing pectoral fins, sets up a current of water over the eggs; he drives off all intruders with the most vicious attacks, and keeps off many an enemy simply by a display of reckless fury; thus he stands guard until the eggs hatch and the tiny little sticklebacks come out of the nest and float off, attaching themselves by their mouths to the pond weeds until they become strong enough to scurry around in the water.

Some species arrange two doors in this spherical nest so that a current of water can flow through and over the eggs. Mr. Eugene Barker, who has made a special study of the little five-spined sticklebacks of the Cayuga Basin, has failed to find more than one door to their nests. Mr. Barker made a most interesting observation on this stickleback's obsession for fatherhood. He placed in the aquarium two nests, one of which was guarded by its loyal builder, which allowed himself to be caught rather than desert his post; the little guardian soon discovered the unprotected nest and began to move the eggs from it to his own, carrying them carefully in his mouth. This addition made his own nest so full that the eggs persistently crowded out of the door, and he spent much of his time nudging them back with his snout. We saw this stickleback fill his mouth with algae from the bottom of the aquarium, and holding himself steady a short distance away, apparently blow the algae at the nest from a distance of half an inch, and we wondered if this was his method of laying on his building materials before he cemented them.

The eggs of this species are white and shining like minute pearls, and seem to be fastened together in small packages with gelatinous matter. The mating habits of this species have not been thoroughly studied; therefore, here is an opportunity for investigation on the part of the boys and girls.
LESSON XLI

The Stickleback

Leading thought—The stickleback is the smallest of our common fish. It lives in stagnant water. The father stickleback builds his pretty nest of frog-spittle which he watches very carefully.

Method—To find sticklebacks go to a pond of stagnant water which does not dry up during the year. If it is partly shaded by bushes so much the better. Take a dip net and dip deeply; carefully examine all the little fish in the net by putting them in a Mason jar of water so that you can see what they are like. The stickleback is easily distinguished by the five spines along its back. If you collect these fish as early as the first of May and place several of them in the aquarium with plenty of the algae known as frog-spittle and other water plants they may perhaps build a nest for you. They may be fed upon bits of meat or liver chopped very fine or upon earthworms cut into small sections.

Observations—1. How did the stickleback get its name? How many spines has it? Where are they situated? Are they always carried erect? How are these spines used as weapons? How do they act as a means of safety to the stickleback?
2. Describe or make a sketch showing the shape and position of the dorsal, the anal, the ventral and the pectoral fins. What is the shape of the tail? What is the general shape of the fish?
3. What is the color of the sticklebacks? Is the color always the same? What is the color and position of the lateral line?
4. Describe the eyes. Are they large or small? Can they be moved? Do you think they can see far?
5. Describe the mouth. Does it open upward, straight ahead or downward?
6. When the stickleback is swimming what are the positions and motions of the dorsal, anal, tail and pectoral fins? Can you see the ventral pair? Are they extended when the fish is swimming?
7. When resting among the pond weed of the aquarium what fins does the stickleback use for keeping afloat? How are the other fins held? What fins does it use to move backward? Which ones are used when it lifts itself from the bottom to the top of the aquarium? How are its fins placed when it is at rest on the bottom?
8. Drop a piece of earthworm or some liver or fresh meat cut finely into the aquarium and describe the action of the sticklebacks as they eat it. How large is a full-grown stickleback?
9. In what kind of ponds do we find sticklebacks? Do you know how the stickleback nest looks? Of what is it built? How is it supported? Is there one door or two? Does the father or mother stickleback build the nest? Are the young in the nest cared for? At what time is the nest built?

Supplementary reading—Fish-stories, Chap. XXXVI, Jordan and Holder.
The sunfish likes quiet waters for nesting.

THE SUNFISH

Teacher's Story

His little disc of gay color has won many popular names. It is called pumpkin seed, tobacco box and sunfish because of its shape, and it is also called bream and pondfish. I have always wondered that it was not called chieftain also, for when it raises its dorsal fin with its saw crest of spines, it looks like the head-dress of an Indian chief; and surely no warrior ever had a greater enjoyment in a battle than does this indomitable little fish.

The sunfish lives in the eddies of our clear brooks and ponds. It is a near relative to the rock bass and also of the black bass and it has, according to its size, just as gamey qualities as the latter. I once had a sunfish on my line which made me think I had caught a bass and I do not know whether I or the mad little pumpkin seed was the most disgusted when I discovered the truth. I threw him back in the water but his fighting spirit was up, and he grabbed my hook again within five minutes, which showed that he had more courage than wisdom; it would have served him right if I had fried him in a pan, but I never could make up my mind to kill a fish for the sake of one mouthful of food.

Perhaps of all its names, "pumpkin seed" is the most graphic, for it resembles this seed in the outlines of its body when seen from the side. Looked at from above, it has the shape of a powerful craft with smooth,
rounded nose and gently swelling and tapering sides; it is widest at the eyes and this is a canny arrangement, for these great eyes turn alertly in every direction; and thus placed they are able to discern the enemy or the dinner coming from any quarter.

The dorsal fin is a most militant looking organ. It consists of ten spines, the hind one closely joined to the hind dorsal fin, which is supported by the soft rays. The three front spines rise successively, one above another and all are united by the membrane, the upper edge of which is deeply toothed. The hind dorsal fin is gracefully rounded and the front and hind fin work independently of each other, the latter often winnowing the water when the former is laid flat. The tail is strong and has a notch in the end; the anal fin has three spines on its front edge and

ten soft rays. Each ventral fin also has a spine at the front edge and is placed below and slightly behind the pectorals. The pectoral fins, I have often thought, were the most exquisite and gauzelike in texture of any fins I have ever seen; they are kept almost constantly in motion and move in such graceful flowing undulations that it is a joy to look at them.

The eye of the sunfish is very large and quite prominent; the large black pupil is surrounded by an iris that has shining lavender and bronze in it, but is more or less clouded above; the young ones have a pale silver iris. The eyes move in every direction and are eager and alert in their expression. The mouth is at the front of the body but it opens upward. The gill opening is prolonged backward at the upper corner, making an earlike flap; this, of course, has nothing to do with the fish's ears, but it is highly ornamental as it is greenish-black in color, bordered by iridescent, pale green, with a brilliant orange spot on its hind edge. The colors of the sunfish are too varied for description and too beautiful to reduce to mere words. There are dark, dull, greenish or purplish cross-bands worked out in patterns of scale-mosaic, and between them are bands of pale iridescent-green, set with black-edged orange spots. But just as we
have described his colors our sunfish darts off and all sorts of shimmering, shining blue, green and purple tints play over his body and he settles down into another corner of the aquarium and his colors seem much paler and we have to describe him over again. The body below is brassy-yellow.

The beautiful colors which the male sunfish dons in spring, he puts at once to practical use. Professor Reighard says that when courting and trying to persuade his chosen one to come to his nest and there deposit her eggs, he faces her, with his gill covers puffed out, the scarlet or orange spot on the ear-flap standing out bravely, and his black ventral fins spread wide to show off their patent-leather finish. Thus, does he display himself before her and persuade her, but he is rarely allowed to do this in peace. Other males as brilliant as he arrive on the scene and he must forsooth stop parading before his lady love in order to fight his rival; and

![Male of the sunfish guarding his nest.](image)

he fights with as much display of color as he courts. But in the sunfish duel the participants do not seek to destroy each other but to mutilate spitefully each other's fins. The vanquished one with his fins all torn retires from the field. Professor Gill says: "Meanwhile the male has selected a spot in very shallow water near the shore, and generally in a mass of aquatic vegetation, not too large or close together to entirely exclude the light and heat of the sun, and mostly under an over-hanging plant. The choice is apt to be in some general strip of shallow water close by the shore which is favored by many others so that a number of similar nests may be found close together, although never encroaching on each other. Each fish slightly excavates and makes a saucer-like basin in the chosen area which is carefully cleared of all pebbles. Such are removed by violent jerks of the caudal fin or are taken up by the mouth and carried to the circular boundary of the nest. An area of fine, clean sand or gravel is generally the result, but not infrequently, according to Dr. Reighard, the
nest bottom is composed of the rootlets of water plants. The nest has a diameter of about twice the length of the fish."

On the nest thus formed, the sunfish belle is invited to deposit her eggs, which as soon as laid fall to the bottom and become attached to the gravel at the bottom of the nest by the viscid substance which surrounds them. Her duty is then done and she departs, leaving the master in charge of his home and the eggs. If truth be told, he is not a strict monogamist. Professor Reighard noticed one of these males which reared in one nest two broods laid at quite different times by two females. For about a week, depending upon the temperature, the male is absorbed in his care of the eggs and defends his nest with much ferocity, but after the eggs have hatched he considers his duty done and lets his progeny take care of themselves as best they may.

Sunfish are easily taken care of in an aquarium, but each should be kept by himself as they are likely to attack any smaller fish and are most uncomfortable neighbors. I have kept one of these beautiful, shimmering pumpkin seeds for nearly a year, by feeding him every alternate day with an earthworm; these unfortunate creatures are kept stored in damp soil in an iron kettle during the winter. When I threw one of them into the aquarium he would seize it and shake it as a terrier shakes a rat; but this was perhaps to make sure of his hold. Once he attempted to take the second worm directly after the first; but it was a doubtful proceeding, and the worm reappeared as often as a prima donna, waving each time a frenzied farewell to the world.

LESSON XLI

THE SUNFISH

Leading thought—The pumpkin seeds are very gamey little fishes which seize the hook with much fierceness. They live in the still waters of our streams or in ponds and build nests in the spring, in which the eggs are laid and which they defend valiantly.

Method—The common pumpkin seed in the jar aquarium is all that is necessary for this lesson. However, it will add much to the interest of the lesson if the boys who have fished for pumpkin seeds will tell of their experiences. The children should be stimulated by this lesson to a keen interest in the nesting habits of the sunfishes.

Observations—1. Where are the sunfish found? How do they act when they take the hook?

2. What is the general shape of the sunfish's body as seen from above? As seen from the side? Why is it called pumpkin seed?

3. Describe the dorsal fin. How many spines has it? How many soft rays? What is the difference in appearance between the front and hind dorsal fin? Do the two act together or separately? Describe the tail fin. Describe the anal fin. Has it any spines? If so, where are they? Where are the ventral fins in relation to the pectorals? What is there peculiar about the appearance and movements of the pectoral fins?

4. Describe the eye of the sunfish. Is it large or small? Is it placed so that the fish can see on each side? Does the eye move in all directions?

5. Describe the position of the mouth. In which direction does it open?
6. What is the color of the upper portion of the gill opening or operculum? What is the general color of the sunfish? Above? Below? Along the sides? What markings do you see?

7. Where does the sunfish make its nest? Does the father or mother sunfish make the nest? Do one or both protect it? Describe the nest.

8. How many names do you know for the sunfish? Describe the actions of your sunfish in the aquarium. How does he act when eating an earthworm?

Supplementary reading—Chapters XXX, XXXVI, in Fish Stories, Jordan and Holder.

"The lamprey is not a fish at all, only a wicked imitation of one which can deceive nobody. But there are fishes which are unquestionably fish—fish from gills to tail, from head to fin, and of these the little sunfish may stand first. He comes up the brook in the spring, fresh as "coin just from the mint," finny arms and legs wide spread, his gills moving, his mouth opening and shutting rhythmically, his tail wide spread, and ready for any sudden motion for which his erratic little brain may give the order. The scales of the sunfish shine with all sorts of scarlet, blue, green and purple and golden colors. There is a black spot on his head which looks like an ear, and sometimes grows out in a long black flap, which makes the imitation still closer. There are many species of the sunfish, and there may be half a dozen of them in the same brook, but that makes no difference; for our purposes they are all one.

They lie poised in the water, with all fins spread, strutting like turkey-cocks, snapping at worms and little crustaceans and insects whose only business in the brook is that the fishes may eat them. When the time comes, the sunfish makes its nest in the fine gravel, building it with some care—for a fish. When the female has laid her eggs the male stands guard until the eggs are hatched. His sharp teeth and snappish ways, and the bigness of his appearance when the fins are all displayed, keep the little fishes away. Sometimes, in his zeal, he snaps at a hook baited with a worm. He then makes a fierce fight, and the boy who holds the rod is sure that he has a real fish this time. But when the sunfish is out of the water, strung on a willow rod, and dried in the sun, the boy sees that a very little fish can make a good deal of a fuss."

—David Starr Jordan.
THE JOHNNY DARTER

Teacher’s Story

“We never tired of watching the little Johnny, or Tessellated darter (Boleosoma nigrum), although our earliest aquarium friend, (and the very first specimens showed us by a rapid ascent of the river weed how 'a Johnny could climb trees,') he has still many resources which we have never learned. Whenever we try to catch him with the hand we begin with all the uncertainty that characterized our first attempts, even if we have him in a two-quart pail. We may know him by his short fins, his first dorsal having but nine spines, and by the absence of all color save a soft, yellowish brown, which is freckled with darker markings. The dark brown on the sides is arranged in seven or eight W-shaped marks, below which are a few flecks of the same color. Covering the sides of the back are the wavy markings and dark specks which have given the name of the "Tessellated Darter," but Boleosoma is a preferred name, and we even prefer 'boly' for short. In the spring the males have the head jet black; and this dark color often extends on the back part of the body, so that the fish looks as if he had been taken by the tail and dipped into a bottle of ink. But with the end of the nuptial season this color disappears and the fish regains his normal, strawy hue.

His actions are rather bird-like; for he will strike attitudes like a tufted titmouse and he flies rather than swims through the water. He will, with much perseverance, push his body between a plant and the sides of the aquarium and balance himself on a slender stem. Crouching catlike before a snail shell, he will snap off a horn which the unlucky owner pushes timidly out. But he is also less dainty and seizing the animal by the head, he dashes the shell against the glass or stones until he pulls the body out or breaks the shell.”—David Starr Jordan.

The johnny darters are, with the sticklebacks, the most amusing little fish in the aquarium. They are well called darters since their movements are so rapid when they are frightened that the eye can scarcely follow them; and there is something so irresistibly comical in their bright, saucy
eyes, placed almost on top of the head, that no one could help calling one of them "Johnny." A "Johnny" will look at you from one side, and then as quick as a flash, will flounce around and study you with the other eye and then come toward you head-on so that he may take you in with both eyes; he seems just as interested in the Johnny out of the jar as is the latter, in the Johnny within.

The Johnny darter has a queer shaped body for a fish, for the head and shoulders are the larger part of him; not that he suddenly disappears into nothingness, by no means! His body is long and very slightly tapering to the tail; along his lateral line he has a row of olive-brown W's worked out in scale-mosaics; and he has some other scale-mosaics also following a pattern of angular lines and making blotches along his back. The whole upper part of his body is pale olive, which is a good imitation of the color of the brook.

The astonished and anxious look on the Johnny darter's face comes from the peculiar position of the eyes which are set in the top of his forehead; they are big, alert eyes, with large black pupils, surrounded by a shining, pale yellow line at the inner edge of the green iris; and as the pupil is not set in the center of the eye, the iris above being wider than below, the result is an astonished look, as from raised eyebrows. The eyes move, often so swiftly that it gives the impression of winking. The eyes, the short snout, and the wide mouth give Johnny a decidedly frog-like aspect.

Although he is no frog, yet Johnny darter seems to be in a fair way to develop something to walk upon. His pectoral fins are large and strong and the ventral pair are situated very close to them; when he rests upon the gravel he supports himself upon one or both of these pairs of fins. He rests with the pectoral fins outspread, the sharp points of the rays taking hold of the gravel like toenails and thus give him the appearance of walking on his fins; if you poke him gently, you will find that he is very firmly planted on his fins so that you can turn him around as if he were on a pivot. He also uses the pectorals for swimming and jerks himself along with them in a way that makes one wonder if he could not swim well without any tail at all. The tail is large and almost straight across the end and is a most vigorous pusher. There are two dorsal fins; the front one has only nine rays; these are not branched and are therefore spines; when the fin is raised it appears almost semi-circular in shape. The hind dorsal fin is much longer and when lifted stands higher than the front one; its rays are all branched except the front one. As soon as the Johnny stops swimming he shuts the front dorsal fin so that it can scarcely be detected; when frightened he shuts both the dorsal fins and closes the tail and the anal fin and spreads out his paired fins so that his body lies flat on the bottom; this act always reminds one of the "freezing" habit of the rabbit. But Johnny does not stay scared very long; he lifts his head up inquisitively, stretching up as far as he is able on his front feet, that is, his pectorals, in such a comical way that one can hardly realize he is a fish.
The tail and the dorsal fin of the Johnny darter are marked with silver dots which give them an exquisite spun-glass look; they are as transparent as gauze.

The Johnny darters live in clear, swift streams where they rest on the bottom, with the head up stream. Dr. Jordan has said they can climb up water weed with their paired fins. I have never observed them doing this but I have often seen one walk around the aquarium on his fins as if they were little fan-shaped feet; and when swimming he uses his fins as a bird uses its wings. There are many species of darters, some of them the most brilliantly colored of any of our fresh-water fishes. The darters are perch-like in form.

Dr. Jordan says of the breeding habits of the darters: "On the bottom, among the stones, the female casts her spawn. Neither she nor the male pays any further attention to it, but in the breeding season the male is painted in colors as beautiful as those of the wood warblers. When you go to the brook in the spring you will find him there, and if you catch him and turn him over on his side you will see the colors that he shows to his mate, and which observation shows are most useful in frightening away his younger rivals. But do not hurt him. Put him back in the brook and let him paint its bottom with colors of a rainbow, a sunset or a garden of roses. All that can be done with blue, crimson and green pigments, in fish ornamentation, you will find in some brook in which the darters live."

Lesson XLIII

Johnny Darter

Leading thought—The Johnny darter naturally rests upon the bottom of the stream where the current is swift. It uses its two pairs of paired fins somewhat as feet in a way interesting to observe.

Method—Johnny darters may be caught in nets with other small fry and placed in the aquarium. Place one or two of them in individual aquaria where the pupils may observe them at their leisure. They do best in running water.

Observations—1. Describe or sketch the Johnny darter from above. From the side. Can you see the W-shaped marks along its side? How is it colored above?

2. How are the pectoral fins placed? Are they large or small? How are they used in swimming? Where are the ventral fins placed? How are the ventrals and dorsals used together? When resting on the bottom how are the pectoral fins used?

3. What is there peculiar about the dorsal fins of the Johnny darter? When he is resting, what is the attitude of the dorsal fins? What is the difference in shape of the rays of the front and hind dorsal fins?

4. When resting on the bottom of the aquarium how is the body held? On what does it rest? In moving about the bottom slowly why does it seem to walk? How does it climb up water weed?

5. When frightened how does it act? Why is it called a darter? What is the attitude of all the fins when the fish is moving swiftly?

6. What is the shape of the tail?
7. What is there peculiar about the eyes of the Johnny? Describe the eyes and their position. What reason is there in the life of the fish that makes this position of the eyes advantageous?

8. Where do we find the Johnny darters? In what part of the stream do they live? Are they usually near the surface of the water or at the bottom?

"To my mind, the best of all subjects for nature-study is a brook. It affords studies of many kinds. It is near and dear to every child. It is an epitome of the nature in which we live. In miniature, it illustrates the forces which have shaped much of the earth's surface. It reflects the sky. It is kissed by the sun. It is rippled by the wind. The timorous play in the pools. The soft weeds grow in the shallows. The grass and the dandelions lie on its sunny banks. The moss and the fern are sheltered in the nooks. It comes from one knows not whence; it flows to one knows not whither. It awakens the desire to explore. It is fraught with mysteries. It typifies the flood of life. It goes on forever.

In other words, the reason why the brook is such a perfect nature-study subject is the fact that it is the central theme in a scene of life. Living things appeal to children."

"Nature-study not only educates, but it educates nature-ward; and nature is ever our companion, whether we will or no. Even though we are determined to shut ourselves in an office, nature sends her messengers. The light, the dark, the moon, the cloud, the rain, the wind, the falling leaf, the fly, the bouquet, the bird, the cockroach—they are all ours.

If one is to be happy, he must be in sympathy with common things. He must live in harmony with his environment. One cannot be happy yonder nor tomorrow: he is happy here and now, or never. Our stock of knowledge of common things should be great. Few of us can travel. We must know the things at home.

Nature-love tends toward naturalness, and toward simplicity of living. It tends country-ward. One word from the fields is worth two from the city. "God made the country."

I expect, therefore, that much good will come from nature-study. It ought to revolutionize the school life, for it is capable of putting new force and enthusiasm into the school and the child. It is new, and therefore, is called a fad. A movement is a fad until it succeeds. We shall learn much, and shall outgrow some of our present notions, but nature-study has come to stay. It is in much the same stage of development that manual-training and kindergarten work were twenty-five years ago. We must take care that it does not crystallize into science-teaching on the one hand, nor fall into mere sentimentalism on the other.

I would again emphasize the importance of obtaining our fact before we let loose the imagination, for on this point will largely turn the results—the failure or the success of the experiment. 'We must not allow our fancy to run away with us. If we hitch our wagon to a star, we must ride with mind and soul and body all alert. When we ride in such a wagon, we must not forget to put in the tail-board.'

III. BATRACHIAN STUDY

THE COMMON TOAD

Teacher’s Story

"The toad hopped by us with jolting springs."—Akers.

W

HOEVER has not had a pet toad has missed a most
entertaining experience. Toad actions are surpris-
ingly interesting; one of my safeguards against the
blues is the memory of the thoughtful way one of my
pet toads rubbed and patted its stomach with its little
hands after it had swallowed a June-bug. Toads do
not make warts upon attacking hands, neither do they
rain down nor are they found in the bed-rock of
quarries; but they do have a most interesting history of their own,
which is not at all legendary, and which is very like a life with two in-
carnations.

The mother toad lays her eggs in May and June in ponds, or in the still
pools, along streams; the eggs are laid in long strings of jellylike sub-
stance, and are dropped upon the pond bottom or attached to water
weeds; when first deposited, the jelly is transparent and the little black
eggs can be plainly seen; but after a day or two, bits of dirt accumulate
upon the jelly, obscuring the eggs. At first the eggs are spherical, like
tiny black pills, but as they begin to develop, they elongate and finally
the tadpoles may be seen wriggling in the jelly mass, which affords them
efficient protection. After four or five days, the tadpoles usually
work their way out and swim away; at this stage, the only way to detect
the head, is by the direction of the tadpole’s progress, since it naturally
goes head first. However, the head soon becomes decidedly larger,
although at first it is not provided with a mouth; it has instead, a
V-shaped elevation where the mouth should be, which forms a sucker
secreting a sticky substance by means of which the tadpole attaches
itself to water weeds, resting head up. When two or three days old, we
can detect little tassels on either side of the throat, which are the gills
by which the little creature breathes; the blood passes through these
gills, and is purified by coming in contact with the air which is mixed in
the water. About ten days later, these gills disappear beneath a mem-
brane which grows down over them; but they are still used for breathing,
simply having changed position from the outside to the inside of the
throat. The water enters the nostrils to the mouth, passes through an
opening in the throat and flows over the gills and out through a little
opening at the left side of the body; this opening or breathing-pore, can
be easily seen in the larger tadpoles; and when the left arm develops, it is
pushed out through this convenient orifice.

When about ten days old, the tadpole has developed a small, round
mouth which is constantly in search of something to eat, and at the same
time constantly opening and shutting to take in air for the gills; the
mouth is provided with horny jaws for biting off pieces of plants. As the
tadpole develops, its mouth gets larger and wider and extends back beneath the eyes, with a truly toadlike expansiveness.

At first, the tadpole's eyes are even with the surface of the head and can scarcely be seen, but later they become more prominent and bulge like the eyes of the adult toad.

The tail of the tadpole is long and flat, surrounded by a fin, thus making an organ for swimming. It strikes the water, first this side and then that, making most graceful curves, which seem to originate near the body and multiply toward the tip of the tail. This movement propels the tadpole forward, or in any direction. The tail is very thin when seen from above; and it is amusing to look at a tadpole from above, and then at the side; it is like squaring a circle.

There is a superstition that tadpoles eat their tails; and in a sense this is true, because the material that is in the tail is absorbed into the growing body; but the last thing a right-minded tadpole would do, would be to bite off its own tail. However, if some other tadpole should bite off the tail or a growing leg, these organs conveniently grow anew.

When the tadpole is a month or two old, depending upon the species, its hind legs begin to show; they first appear as mere buds which finally push out completely. The feet are long and provided with five toes, of which the fourth is the longest; the toes are webbed so that they may be used to help in swimming. Two weeks later the arms begin to appear, the left one pushing out through the breathing-pore. The "hands" have four fingers and are not webbed; they are used in the water for balancing; while the hind legs are used for pushing, as the tail becomes smaller.
As the tadpole grows older, not only does its tail become shorter but its actions change. It now comes often to the surface of the water in order to get more air for its gills, although it lacks the frog tadpole's nice adjustment of the growing lungs and the disappearing gills. At last some fine rainy day, the little creature feels that it is finally fitted to live the life of a land animal. It may not be a half inch in length, with big head, attenuated body and stumpy tail, but it swims to the shore, lifts itself on its front legs, which are scarcely larger than pins, and walks off, toeing in, with a very grown up air, and at this moment, the tadpole attains toadship. Numbers of them come out of the water together, hopping hither and thither with all of the eagerness and vim of untried youth. It is when issuing thus in hordes from the water and seen by the ignorant, that they gain the reputation of being rained down, when they really were rained up. It is quite impossible for a beginner to detect the difference between the toad and the frog tadpole; usually those of the toads are black, while those of the frogs are otherwise colored, though this is not an invariable distinction. The best way to distinguish the two is to get the eggs and develop the two families separately.

The general color of the common American toad is extremely variable. It may be yellowish-brown, with spots of lighter color, and with reddish or yellow warts. There are likely to be four irregular spots of dark color along each side of the middle of the back, and the under parts are light colored, often somewhat spotted. The throat of the male toad is black and he is not so bright in color as is the female. The warts upon the back are glands, which secrete a substance disagreeable for the animal seeking toad dinners. This is especially true of the glands in the elongated swelling or wart, above and just back of the ear, which is called the parotid gland; these give forth a milky, poisonous substance when the toad is seized by an enemy, although the snakes do not seem to mind it. Some people have an idea that the toad is slimy, but this is not true; the skin is perfectly dry. The toad feels cold to the hand because it is a cold-blooded animal, which means an animal with blood the temperature of the surrounding atmosphere; while the blood of the warm-blooded animal, has a temperature of its own, which it maintains whether the surrounding air is cold or hot.

The toad's face is well worth study; its eyes are elevated and very pretty, the pupil being oval and the surrounding iris shining like gold. The toad winks in a wholesale fashion, the eyes being pulled down into the head; the eyes are provided with nictitating lids, which rise from below, and are similar to those found in birds. When a toad is sleeping, its eyes do not bulge but are drawn in, so as to lie even with the surface of the head. The two tiny nostrils are black and are easily seen; the ear is a flat, oval spot behind the eye.

As the tadpole grows older, not only does its tail become shorter but its actions change. It now comes often to the surface of the water in order to get more air for its gills, although it lacks the frog tadpole's nice adjustment of the growing lungs and the disappearing gills. At last some fine rainy day, the little creature feels that it is finally fitted to live the life of a land animal. It may not be a half inch in length, with big head, attenuated body and stumpy tail, but it swims to the shore, lifts itself on its front legs, which are scarcely larger than pins, and walks off, toeing in, with a very grown up air, and at this moment, the tadpole attains toadship. Numbers of them come out of the water together, hopping hither and thither with all of the eagerness and vim of untried youth. It is when issuing thus in hordes from the water and seen by the ignorant, that they gain the reputation of being rained down, when they really were rained up. It is quite impossible for a beginner to detect the difference between the toad and the frog tadpole; usually those of the toads are black, while those of the frogs are otherwise colored, though this is not an invariable distinction. The best way to distinguish the two is to get the eggs and develop the two families separately.

The general color of the common American toad is extremely variable. It may be yellowish-brown, with spots of lighter color, and with reddish or yellow warts. There are likely to be four irregular spots of dark color along each side of the middle of the back, and the under parts are light colored, often somewhat spotted. The throat of the male toad is black and he is not so bright in color as is the female. The warts upon the back are glands, which secrete a substance disagreeable for the animal seeking toad dinners. This is especially true of the glands in the elongated swelling or wart, above and just back of the ear, which is called the parotid gland; these give forth a milky, poisonous substance when the toad is seized by an enemy, although the snakes do not seem to mind it. Some people have an idea that the toad is slimy, but this is not true; the skin is perfectly dry. The toad feels cold to the hand because it is a cold-blooded animal, which means an animal with blood the temperature of the surrounding atmosphere; while the blood of the warm-blooded animal, has a temperature of its own, which it maintains whether the surrounding air is cold or hot.

The toad's face is well worth study; its eyes are elevated and very pretty, the pupil being oval and the surrounding iris shining like gold. The toad winks in a wholesale fashion, the eyes being pulled down into the head; the eyes are provided with nictitating lids, which rise from below, and are similar to those found in birds. When a toad is sleeping, its eyes do not bulge but are drawn in, so as to lie even with the surface of the head. The two tiny nostrils are black and are easily seen; the ear is a flat, oval spot behind the eye.
and a little lower down; in the common species it is not quite so large as the eye; this is really the ear-drum, since there is no external ear like ours. The toad's mouth is wide and its jaws are horny; it does not need teeth since it swallows its prey whole.

The toad is a jumper, as may be seen from its long, strong hind legs, the feet of which are also long and strong and armed with five toes that are somewhat webbed. The "arms" are shorter and there are four "fingers" to each "hand;" when the toad is resting, its front feet toe-in, in a comical fashion. If a toad is removed from an earth or moss garden, and put into a white wash-bowl, in a few hours it will change to a lighter hue, and vice versa. This is part of its protective color, making it inconspicuous to the eyes of its enemy. It prefers to live in cool, damp places, beneath sidewalks or piazzas, etc., and its warty upper surface resembles the surrounding earth. If it is disturbed, it will seek to escape by long leaps and acts frightened; but if very much frightened, it flattens out on the ground, and looks so nearly like a clod of earth that it may escape even the keen eyes of its pursuer. When seized by the enemy, it will sometimes "play possum," acting as if it were dead; but when actually in the mouth of the foe, it emits terrified and heart rending cries.

The toad's tongue is attached to the lower jaw, at the front edge of the mouth; it can thus be thrust far out, and since it secretes a sticky substance over its surface, any insects which it touches adhere, and are drawn back into the mouth and swallowed. It takes a quick eye to see this tongue fly out and make its catch. The tadpole feeds mostly upon vegetable matter, but the toad lives entirely upon small animals, usually insects; it is not particular as to what kind of insects; but because of the situations which it haunts, it usually feeds upon those which are injurious to grass and plants. Indeed, the toad is really the friend of the gardener and farmer, and has been most ungratefully treated by those whom it has befriended. If you doubt that a toad is an animal of judgment, watch it when it finds an earthworm and set your doubts at rest! It will walk around the squirming worm, until it can seize it by the head, apparently knowing well that the horny hooks extending backward from the segments of the worm, are likely to rasp the throat if swallowed the wrong way. If the worm prove a too large mouthful, the toad promptly uses its hands in an amusing fashion to stuff the wriggling morsel down its throat. When swallowing a large mouthful, it closes its eyes; but whether this aids the process, or is merely an expression of bliss, we have not determined. The toad never drinks by taking in water through the mouth, but absorbs it through the skin; when it wishes to drink, it stretches itself out in shallow water and thus satisfies its thirst; it will waste away and die in a short time, if kept in a dry atmosphere.

The toad burrows in the earth by a method of its own, hard to describe. It kicks backward with its strong hind legs, and in some mysterious way, the earth soon covers all excepting its head; then, if an enemy comes along, back goes the head, the earth caves in around it, and where is your toad! It remains in its burrow or hiding place usually during the day, and comes out at night to feed. This habit is an advantage, because snakes are then safely at home and, too, there are many more insects to be found at night. The sagacious toads have discovered that the vicinity of street lights is swarming with insects, and there they gather in
numbers. In winter they burrow deeply in the ground and go to sleep, remaining dormant until the warmth of spring awakens them; then, they come out, and the mother toads seek their native ponds there to lay eggs for the coming generation. They are excellent swimmers; when swimming rapidly, the front legs are laid backward along the sides of the body, so as to offer no resistance to the water; but when moving slowly, the front legs are used for balancing and for keeping afloat.

The song of the toad is a pleasant, crooning sound, a sort of gutteral trill; it is made when the throat is puffed out almost globular, thus forming a vocal sac; the sound is made by the air drawn in at the nostrils and passed back and forth from the lungs to the mouth over the vocal chords, the puffed-out throat acting as a resonator.

The toad has no ribs by which to inflate the chest, and thus draw air into the lungs, as we do when we breathe; it is obliged to swallow the air instead and thus force it into the lungs. This movement is shown in the constant pulsation, in and out, of the membrane of the throat.

As the toad grows, it sheds its horn skin, which it swallows; as this process is usually done strictly in private, the ordinary observer sees it but seldom. One of the toad's nice common qualities is its enjoyment in having its back scratched gently.

The toad has many enemies; chief among these is the snake and in only a lesser degree, crows and also birds of prey.

LESSON XLIV

The Tadpole Aquarium

Leading thought—The children should understand how to make the tadpoles comfortable and thus be able to rear them.

Materials—A tin or agate pan or a deep earthenware wash-bowl.

Things to be done—1. Go to some pond where tadpoles live.
2. Take some of the small stones on the bottom and at the sides of the pond lifting them very gently so as not to disturb what is growing on their surface. Place these stones on the bottom of the pan, building up one side higher than the other, so that the water will be more shallow on one side than on the other; a stone or two should project above the water.
3. Take some of the mud and leaves from the bottom of the pond, being careful not to disturb them and place upon the stones.
4. Take some of the plants found growing under water in the pond and plant them among the stones.
5. Carry the pan thus prepared back to the schoolhouse and place it where the sun will not shine directly upon it.
6. Bring a pail of water from the pond and pour it very gently in at one side of the pan, so as not to disarrange the plants; fill the pan nearly to the brim.
7. After the mud has settled and the water is perfectly clear, remove some of the tadpoles, which have hatched in the glass aquarium, and place in the "pond." Not more than a dozen should be put in a pan of this size, since the amount of food and microscopic plants which are on the stones in the mud, will afford food for only a few tadpoles.
8. Every week add a little more mud from the bottom of the pond or another stone covered with slime, which is probably some plant growth. More water from the pond should be added to replace that evaporated.
9. Care should be taken that the tadpole aquarium be kept where the sun will not shine directly upon it for any length of time, because if the water gets too warm the tadpoles will die.
10. Remove the "skin" from one side of a tulip leaf, so as to expose the pulp of the leaf, and give to the tadpoles every day or two. Bits of hard-boiled egg should be given now and then.

Toads' Eggs and Tadpoles

Leading thought—The toad's eggs are laid in strings of jelly in ponds. The eggs hatch into tadpoles which are creatures of the water, breathing by gills, and swimming with a long fin. The tadpoles gradually change to toads, which are air-breathing creatures, fitted for life on dry land.

Method—The eggs of toads may be found in almost any pond about the first of May and may be scraped up from the bottom in a scoop-net. They should be placed in the aquarium where the children can watch the stages of development. Soon after they are hatched, a dozen or so should be selected and placed in the tadpole aquarium and the others put back into the stream. The children should observe the tadpoles every day, watching carefully all the changes of structure and habit which take place. If properly fed, the tadpoles will be ready to leave the water in July, as tiny toads.

Observations—1. Where were the toads' eggs found and on what date? Were they attached to anything in the water or were they floating free? Are the eggs in long strings? Do you find any eggs laid in jelly-like masses? If so, what are they? How can you tell the eggs of toads from those of frogs?
2. Is the jellylike substance in which the eggs are placed clear or discolored? What is the shape and the size of the eggs? A little later how do they look? Do the young tadpoles move about while they are still in the jelly mass?
3. Describe how the little tadpole works its way out from the jelly covering. Can you distinguish then which is head and which is tail? How does it act at first? Where and how does it rest?
4. Can you see with the aid of a lens the little fringes on each side of the neck? What are these? Do these fringes disappear a little later? Do they disappear on both sides of the neck at once? What becomes of
Toad development in a single season (1903).

1-18. Changes and growth from April to November
9-14. Different sizes, July 30, 1903
1-13. Development in 25 to 60 days
15-18. Different sizes, October 21, 1903
10. 11. The same tadpole, 11 is 47 hours older than 10
12, 13. The same tadpole, 13 is 47 hours older than 12

Photo by S. H. Gage.
them? How does the tadpole breathe? Can you see the little hole on
the left side, through which the water used for breathing passes?
5. How does the tail look and how is it used? How long is it in
proportion to the body? Describe the act of swimming.
6. Which pair of legs appears first? How do they look? When they
get a little larger are they used as a help in swimming? Describe the hind
legs and feet.
7. How long after the hind legs appear before the front legs or arms
appear? What happens to the breathing-pore when the left arm is pushed
through?
8. After both pairs of legs are developed what happens to the tail?
What becomes of it?
9. When the tadpole is very young can you see its eyes? How do
they look as it grows older? Do they ever bulge out like toads’ eyes?
10. As the tadpole gains its legs and loses its tail how does it change
in its actions? How does it swim now? Does it come oftener to the
surface? Why?
11. Describe the difference between the front and the hind legs and
the front and the hind feet on the fully grown tadpole. If the tail or
a leg is bitten off by some other creature will it grow again?

LESSON XLV

THE TOAD

Leading thought—The toad is colored so that it resembles the soil and
thus escapes the observation of its enemies. It lives in damp places and
eats insects, usually hunting them at night. It has powerful hind legs
and is a vigorous jumper.

Method—Make a moss garden in a glass aquarium jar thus: Place
some stones or gravel in the bottom of the jar and cover with moss.
Cover the jar with a wire screen. The moss should be deluged with
water at least once a day and the jar should be placed where the direct
sunlight will not reach it. In this jar, place the toad for study.

Observations—1. Describe the general color of the toad above and
below. How does the toad’s back look? Of what use are the warts on
its back?
2. Where is the toad usually found? Does it feel warm or cold to the
hand? Is it slimy or dry? The toad is a cold-blooded animal, what does
this mean?
3. Describe the eyes and explain how their situation is of special
advantage to the toad. Do you think it can see in front and behind and
above all at the same time? Does the bulge of the eyes help in this?
Note the shape and color of the pupil and iris. How does the toad wink?
4. Find and describe the nostrils. Find and describe the ear. Note the swelling above and just back of the ear. Do you know the use
of this?
5. What is the shape of the toad’s mouth? Has it any teeth? Is
the toad’s tongue attached to the front or the back part of the mouth?
How is it used to catch insects?
6. Describe the “arms and hands.” How many “fingers” on the
“hand?” Which way do the fingers point when the toad is sitting down?
7. Describe the legs and feet. How many toes are there? What is the relative length of the toes and how are they connected? What is this web between the toes for? Why are the hind legs so much larger than the front legs?

8. Will a toad change color if placed upon different colored objects? How long does it take it to do this? Of what advantage is this to the toad?

9. Where does the toad live? When it is disturbed how does it act? How far can it jump? If very frightened does it flatten out and lie still? Why is this?

10. At what time does the toad come out to hunt insects? How does it catch the insect? Does it swallow an earthworm head or tail first? When swallowing an earthworm or large insect, how does it use its hands? How does it act when swallowing a large mouthful?

11. How does the toad drink? Where does it remain during the day? Describe how it burrows into the earth.

12. What happens to the toad in the winter? What does it do in the spring? Is it a good swimmer? How does it use its legs in swimming?

13. How does the toad look when croaking? What sort of a noise does it make?

14. Describe the action of the toad’s throat when breathing. Did you ever see a toad shed its skin?

15. What are the toad’s enemies? How does it act when caught by a snake? Does it make any noise? Is it swallowed head or tail first? What means has it of escaping or defending itself from its enemies?

16. How is the toad of great use to the farmer and gardener?

References—“The Life History of the Toad,” by S. H. Gage, Cornell Nature-Study Volume; The Frog Book, Dickerson.

Supplementary reading—“K’dunk, the fat one,” A Little Brother to the Bear, Long.

"In the early years we are not to teach nature as science, we are not to teach it primarily for method or for drill; we are to teach it for loving—and this is nature-study. On these points I make no compromise."

—L. H. Bailey.
THE TREE-FROG, OR TREE-TOAD

Teacher's Story

"Ere yet the earliest warbler wakes, of coming spring to tell,
From every marsh a chorus breaks, a choir invisible,
As if the blossoms underground, a breath of utterance had found."—Tabb.

ASSOCIATED with the first songs of robin and bluebird,
is the equally delightful chorus of the spring peepers,
yet how infrequently do most of us see a member of
this invisible choir! There are some creatures which
are the quintessence of the slang word "cute" which,
interpreted, means the perfection of Lilliputian proportions, permeated with undaunted spirit. The chickadee is one of these, and the tree-frog is another.

I confess to a thrill of delight when the Pickering's hyla lifts itself on its tiny front feet, twists its head knowingly, and turns on me the full gaze of its bronze-rimmed eyes. This is the tiniest froglet of them all, being little more than an inch long when fully grown; it wears the Greek cross in darker color upon its back, with some stripes across its long hind legs which join the pattern on the back when the frog is "shut up," as the boys say.

The reason we see so little of tree-frogs, is because they are protected from discovery by their color. They have the chameleon power of changing color to match their background. The Pickering's hyla will effect this change in twenty minutes; in this species, the darker lines forming the cross change first, giving a mottled appearance which is at once protective. I have taken three of these peepers, all of them pale yellowish brown with gray markings, and have placed one upon a fern, one on dark soil and one on the purple bud of a flower. Within half an hour, each matched its surroundings so closely, that the casual eye would not detect them. The song of the Pickering's hyla is a resonant chirp, very stirring when heard nearby; it sounds somewhat like the note of a water bird. How such a small creature can make such a loud noise, is a mystery. The process, however, may be watched at night by the light of a lamp, as none of the tree-frogs seem to pay any attention to an artificial light; the thin membrane beneath the throat swells out until it seems almost large enough to balloon the little chap off his perch. No wonder that, with such a sounding-sac, the note is stirring. There are several species of tree-frogs that trill in the branches

Sitting for their pictures.
Pickering's Hyla.
Photo by Cyrus Crosby.
above our heads all summer, and their songs are sometimes mistaken for those of the cicada, which is far more shrill.

The tree-frogs have toes and fingers ending in little round discs which secrete at will a substance by means of which they can cling to vertical surfaces, even to glass. In fact, the way to study these wonderful feet is when the frog is climbing up the sides of the glass jar. The fingers are arranged, two short inside ones, a long one, and another short one outside. The hind feet have three shorter inside toes quite far apart, a long one at the tip of the foot and a shorter one outside. When climbing a smooth surface like glass, the toes are spread wide apart, and there are other little clinging discs on their lower sides, although not so large as those at the tips. It is by means of these sticky, disc-like toes that the tree-frogs hold themselves upon the tree trunks.

The whole body of the tree-frog is covered with little tubercles, which give it a roughened appearance. The eyes are black with the iris of reddish color. The tongue is like that of other frogs, hinged to the front of the lower jaw; it is sticky and can be thrust far out to capture insects, of which the tree-frogs eat vast numbers.

The hylas breathe by the rapid pulsation of the membrane of the throat, which makes the whole body tremble. The nostrils are two tiny holes on either side of the tip of the snout. The ears are a little below and just behind the eyes, and are in the form of a circular slit.

The eggs of the spring peepers are laid in ponds during April; each egg has a little globe of jelly about it and is fastened to a stone or a water plant. The tadpoles are small and delicate; the under side of the body is reddish and shines with metallic lustre. These tadpoles differ from those of other frogs in that they often leave the water while yet the tail is still quite long. In summer, they may be found among the leaves and moss around the banks of ponds. They are indefatigable in hunting for gnats, mosquitoes and ants; their destruction of mosquitoes, as pollywogs and as grown up frogs, renders them of great use to us. The voice of this peeper may be heard among the shrubs and vines or in trees during late summer and until November. The little creatures sleep beneath moss and leaves during the winter, waking to give us the earliest news of spring.
LESSON XLVI

THE TREE-FROG OR TREE-TOAD

Leading thought—The prettiest part of the spring chorus of the frog ponds is sung by the tree-frogs. These little frogs have the tips of their toes specially fitted for climbing up the sides of trees.

Method—Make a moss garden in an aquarium jar or a two-quart can. Place stones in the bottom and moss at one side, leaving a place on the other side for a tiny pond of water. In this garden place a tree-frog and cover the jar with mosquito netting and place in the shade. The frogs may be found by searching the banks of a pond at night with a lantern. However, this lesson is usually given when by accident the tree-frog is discovered. Any species of tree-frog will do; but the Pickering's hyla, known everywhere as the spring peeper, is the most interesting species to study.

Observations—1. How large is the tree-frog? What is its color? Describe the markings.

2. Place the tree-frog on some light-colored surface like a piece of white blotting paper. Note if it changes color after a half hour. Later place it upon some dark surface. Note if it changes color again. How does this power of changing color benefit the tree-frog? Place a tree-frog on a piece of bark. After a time is it noticeable?

3. Describe the eyes. Note how little the tree-frog turns its head to see anything behind it. Describe its actions if its attention is attracted to anything. What color is the pupil? The iris?

4. Note the movement of breathing. Where does this show the most? Examine the delicate membrane beneath the throat. What has this to do with the breathing?

5. What is the tree-frog's note? At what time of day does it peep? At what time of year? Describe how the frog looks when peeping.

6. How does the tree-frog climb? When it is climbing up a vertical surface study its toes. How many on the front foot? How are they arranged? How many toes on the hind foot? Sketch the front and hind feet. How do the toe-discs look when pressed against the glass? How does it manage to make the discs cling and then let go? Are there any more discs on the under side of the toes? Is there a web between the toes of the hind feet? Of the front feet?

7. Look at a tree-frog very closely and describe its nostrils and its ears.

8. Are the tree-frogs good jumpers? What is the size and length of the hind legs as compared with the body?

9. When and where are the eggs of the tree-frog laid? How do they look?

10. How do the tree-frog tadpoles differ from other tadpoles? Describe them if you have ever seen them. In what situations do they live?

11. Of what use are the tree-frogs to us?

References—"The Life History of the Toad," Cornell Nature Study Volume, S. H. Gage; The Frog Book, Dickerson; Familiar Life of Field and Forest, Mathews; American Natural History, Hornaday; Elementary Zoology, V. L. Kellogg; From River Ooze to Tree-top, Sharp.
Bullfrog.

THE FROG

Teacher's Story

THE stroller along brooksides, is likely to be surprised some day, at seeing a bit of moss and earth suddenly make a high leap and a far one, without apparent provocation. An investigation resolves the clump of moss into a brilliantly green and yellow, striped frog, and then the stroller wonders how he could have overlooked such an obvious creature. But the leopard frog is only obvious when it is out of its environment.

The common green frog is quite as well protected since its color is exactly that of green pools. Most frogs spend their lives in or about water, and if caught on land, they make great leaps to reach their native element; the leopard frog and a few other species sometimes wander far afield.

In form, the frog is more slim than the toad, and is not covered with great warts; it is cold and slippery to the touch. The frog’s only chance of escaping its enemies, is through the slipperiness of its body and by making long, rapid leaps. As a jumper, the frog is much more powerful than the toad because its hind legs are so much larger and more muscular, in comparison with its size. The first toe in the front feet of the leopard frog is much swollen, making a fat thumb; the mechanics of the hind legs make it possible for the frog to feather the webbed feet as it swims. On the bottom of the toes are hardened places at the joints, and sometimes others besides, which give the foot a strong hold when pushing for the jump. The toe tips, when they are pressed against the glass, resemble slightly the tree-toads’ discs. The hind foot is very long, while on the front foot the toes radiate almost in a circle. The foot and leg are colored like the back of the body above, and on the under side resemble the under parts.
The frog is likely to be much more brightly colored than the toad, and usually has much of green and yellow in its dress. But the frog lives among green things, while it is to the toad's advantage to be the color of the soil. Frogs also have the chameleon power of changing color, to harmonize with their environment. I have seen a very green leopard frog change to a slate-gray when placed upon slate-colored rock. The change took place in the green portions. The common green frog will likewise change to slate-color, in a similar situation. A leopard frog changed quickly from dark green to pale olive, when it was placed in the water after having been on the soil.

The eyes of frogs are very prominent, and are beautiful when observed closely. The green frog has a dark bronze iris with a gleaming gold edge around the pupil, and around the outer margin. The eye of the leopard frog is darker; the iris seems to be black, with specks of ruddy gold scattered through it, and there is an outer band of red-gold around the margin. When the frog winks, the nictitating membrane rises from below and covers the whole eye; and when the frog makes a special effort of any sort, it has a comical way of drawing its eyes back into its head. When trying to hide at the bottom of the aquarium, the leopard species lets the eye-lids fall over the eyes, so that they do not shine up and attract pursuers.

The ear is in a similar position to that of the toad, and in the bullfrog, is larger than the eye. In the green frog, it is a dull grayish disc, almost as large as the eye. In the leopard frog, it is not so large as the eye, and has a giltish spot at the center.

The nostrils are small and are closed when below the water, as may be easily seen by a lens. The mouth opens widely, the corners extending back under the eye. The jaws are horny and are armed with teeth, which are for the purpose of biting off food rather than for chewing it. When above water, the throat keeps up a rythmic motion which is the process of breathing; but when below water this motion ceases. The food of frogs is largely composed of insects, that frequent damp places or that live in the water.

The sound-sacs of the frogs, instead of being beneath the throat, as is the case with toads and tree-frogs, are at the side of the throat; and when inflated, may extend from just back of the eyes, out above the front legs. The song is characteristic, and pleasant to listen to, if not too close by. Perhaps exception should be made to the lay of the bullfrog, which like the song of some noted opera singers, is more wonderful than musical; the boom of the bullfrog makes the earth fairly quake. If we seize the frog by the hind leg, it will usually croak and thus demonstrate for us, the position of its sound-sacs.

In addition to the snakes, the frogs have inveterate enemies in the herons which frequent shallow water, and eat them in great numbers. The frogs hibernate in mud and about ponds, burrowing deep enough to escape freezing. In the spring, they come up and sing their spring songs and the mother frogs lay their eggs in masses of jelly on the bottom of the pond, usually where the water is deeper than in the situations where the toads' eggs are laid. The eggs of the two can always be distinguished, since the toads' are laid in strings of jelly, while the frogs' are laid in masses.

It is amusing to watch with a lens, the frog tadpoles seeking for their microscopic food along the glass of the aquarium. There are horny
upper and lower jaws, the latter being below and back of the former. The upper jaw moves back and forth slightly and rhythmically, but the dropping of the lower jaw opens the mouth. There are three rows of tiny black teeth below the mouth and one row above; at the sides and below these teeth are little, finger-like fringes. Fringes, rows of teeth and jaws all work together, up and down, out and in, in the process of breathing. The nostrils, although minute, are present in the tadpole in its early stages. The pupil of the eye is almost circular and the iris is usually yellow or copper-bronze, with black mottling. The eyes do not wink nor withdraw. The breathing-pore on the left side, is a hole in a slight protuberance.

At first, the tadpoles of the frogs and toads are very much alike; but later, most of the frog tadpoles are lighter in color, usually being olive-green, mottled with specks of black and white. The frog tadpoles usually remain much longer than the toads in the tadpole stage, and when finally they change to adults, they are far larger in size than the toads are, when they attain their jumping legs.

Frog's eggs.

LESSON XLVII

THE FROG

Leading thought—The frog lives near or in ponds or streams. It is a powerful jumper and has a slippery body. Its eggs are laid in masses of jelly at the bottom of ponds.

Method—The frog may be studied in its native situation by the pupils or it may be brought to the school and placed in an aquarium; however, to make a frog aquarium there needs to be a stick or stone projecting above the water, for the frog likes to spend part of the time entirely out of water or only partially submerged.

Observations—1. Where is the frog found? Does it live all its life in the water? When found on land how and where does it seek to escape?
2. Compare the form of the frog with that of the toad. Describe the skin, its color and texture. Compare the skin of the two.
3. Describe the colors and markings of the frog on the upper and on the under side. How do these protect it from observation from above? From below? How do we usually discover that we are in the vicinity of a frog?
4. Describe the frog's ears, eyes, nostrils and mouth.
5. Compare its "hands and feet" with those of the toad. Why the difference in the hind legs and feet?
6. How does the frog feel to your hand? Is it easy to hold him?
How does this slipperiness of the frog benefit it?
7. On what does the frog feed? What feeds on it? How does it escape its enemies?
8. What sounds does the frog make? Where are its sound sacs located? How do they look when they are inflated?
9. Is the frog a good swimmer? Is it a better jumper than the toad? Why?
10. Where are the frog’s eggs laid? How do they look?
11. Can you tell the frog tadpoles from those of the toad? Which remains longer in the tadpole stage? Study the frog tadpoles, following the questions given in Lesson XLIV.
12. What happens to the frog in winter?

FESTINA LENTE

Once on a time there was a pool
Fringed all about with flag-leaves cool
And spotted with cow-lilies garish,
Of frogs and pouts the ancient parish.
Alders the creaking redwings sink on,
Tussocks that house blithe Bob o’ Lincoln,
Hedged round the massailed seclusion,
Where muskrats piled their cells Carthusian;
And many a moss-embroidered log,
The watering-place of summer frog,
Slept and decayed with patient skill,
As watering-places sometimes will.
Now in this Abbey of Theleme,
Which realized the fairest dream
That ever dosing bull-frog had,
Sunned, on a half-sunk lily pad,
There rose a party with a mission
To mend the polliwog’s condition,
Who notified the selectmen
To call a meeting there and then.
“Some kind of steps,” they said, “are needed;
They don’t come on so fast as we did:
Let’s dock their tails; if that don’t make ’em
Frogs by brood, the Old One take ’em!
That boy, that came the other day
To dig some flag-root down this way,
His jack-knife left, and ’tis a sign
That Heaven approves of our design:
‘They were wacked not to urge the step on,
When Providence has sent the weapon.”
Old croakers, deacons of the mire,
That led the deep batrachian choir,
“Um! Uk! Caronk!” with bass that might
Have left Lablache’s out of sight,
Shook nobby heads, and said “No, go!
You’d better let ’em try to grow:
Old Doctor Time is slow, but still
He does know how to make a pill.”
But vain was all their hoarsest bass,
Their old experience out of place,
And spite of croaking and entreating
The vote was carried in marsh-meeting.
“Lord knows,” protest the polliwogs,
“We’re anxious to be grown-up frogs;
But don’t push in to do the work
Of Nature till she prove a shirk;
’Tis not by jumps that she advances,
But wins her way by circumstances;
Pray, wait awhile, until you know
We’re so contrived as not to grow,
Let Nature take her own direction,
And she’ll absorb our imperfection;
You mightn’t like ’em to appear with,
But we must have the things to steer with.”
“No,” piped the party of reform,
“All great results are la’en by storm;
Fate holds her best gifts till we show
We’ve strength to make her let them go;
The Providence that works in history,
And seems to some folks such a mystery,
Does not creep slowly on, incog.,
But moves by jumps, a mighty frog;
No more reject the Age’s chieft,
Your queues are an anachronism;
No more the future’s promise mock,
But lay your tails upon the block,
Thankful that we the means have voted
To have you thus to frogs promoted.”
The thing was done, the tails were cropped,
And home each philotadpole hopped,
In faith rewarded to exult,
And wait the beautiful result.
Too soon it came; our pool, so long
The theme of patriot bull-frog’s song,
Next day was reeking, fit to smother,
With heads and tails that missed each other,—
Here snowless tails, there tailless snouts;
The only gainers were the pouts.

MORAL

From lower to the higher next,
Not to the top is Nature’s text;
And embryo Good, to reach full stature,
Absorbs the Evil in its nature.

—LOWELL
THE NEWT, EFT, OR SALAMANDER

Teacher's Story

After a rain in spring or summer, we see these little orange-red creatures sprawling along roads or woodland paths, and since they are rarely seen except after rain, the wise people of old, declared they rained down, which was an easy way for explaining their presence. But the newts do not rain down, they rain up instead, since if they have journeys to make they must needs go forth when the ground is wet, otherwise they would dry up and die. Thus, the newts make a practice of never going out except when it rains. A closer view of the eft shows plenty of peculiarities in its appearance to interest us. Its colors are decidedly gay, the body color being orange, ornamented with vermilion dots along each side of the back, each red dot margined with tiny black specks; but the eft is careless about these decorations and may have more spots on one side than on the other. Besides these vermilion dots, it is also adorned with black specks here and there, and especially along its sides looks as if it had been peppered. The newt's greatest beauty lies in its eyes; these are black, with elongated pupils, almost parallel with the length of the head, and bordered above and below with bands of golden, shining iris which give the eyes a fascinating brilliancy. The nostrils are mere pin-holes in the end of the snout.

The legs and feet look queerly inadequate for such a long body, since they are short and far apart. There are four toes on the front feet and five on the hind feet, the latter being decidedly pudgy. The legs are thinner where they join the body and wider toward the feet. The eft can move very rapidly with its scant equipment of legs. It has a misleading way of remaining motionless for a long time and then darting forward like a flash, its long body falling into graceful curves as it moves. But it can go very slowly when exploring; it then places its little hands cautiously and lifts its head as high as its short arms will allow, in order to take observations. Although it can see quite well, yet on an unusual surface, like glass, it seems to feel the way by touching its lower lip to the surface as if to test it. The tail is flattened at the sides and is used to twine around objects in time of need; and I am sure it is also used to push the eft while crawling, for it curves this way and that vigorously, as the feet progress, and obviously pushes against the ground. Then, too, the tail is an aid when, by some chance, the eft is turned over on its back, for with its help, it can right itself speedily. The eft's method of walking is interesting; it moves forward one front foot and then the hind foot on the other side; after a stop for rest, it begins just where it left off when it again starts on. Its beautiful eyes seem to serve the newt well indeed, for I find that, when it sees my face approaching the moss jar, it climbs promptly over to the other side. There are no eyelids for the golden eyes, but the eft can pull them back into its head and close the slit after them, thus making them very safe.

The eft with whose acquaintance I was most favored, was not yet mature and was afraid of earthworms; but he was very fond of plant-lice and it was fun to see the little creature stalking them. A big rose plant-louse would be squirming with satisfaction as it sucked the juice of the leaf, when the eft would catch sight of it and become greatly

197
excited, evidently holding his breath since the pulsating throat would become rigid. There was a particularly alert attitude of the whole front part of the body and especially of the eyes and the head; then the neck would stretch out long and thin, the orange snout approach stealthily within half an inch of the smug aphid, and then there was a flash as of lightning, something too swift to see coming out of the eft's mouth and swooping up the unsuspecting louse. Then there would be a gulp or two and all would be over. If the aphid happened to be a big one, the eft made visible effort to swallow it. Sometimes his eftship would become greatly excited when he first saw the plant-louse, and he would sneeze and snort in a very comical way, like a dog, when eager for game.

The following is the history of this species as summarized from Mrs. S. H. Gage's charming "Story of Little Red Spot." The egg was laid in some fresh water pond or the still borders of some stream where there is a growth of water weed. The egg, which is about the size of a small pea, is fastened to a water plant. It is covered with a tough but translucent envelope, and has at the center a little yellowish globule. In a little less than a month the eft hatches, but it looks very different from the form with which we are most familiar. It has gray stripes upon its sides and three tiny bunches of red gills on each side, just back of its broad head. The tail is long and very thin, surrounded by a fin; it is an expert swimmer and breathes water as does a fish. After a time, it becomes greenish above and buff below, and by the middle of August it develops legs and has changed its form so that it is able to live upon land; it no longer has gills or fin; soon the coat changes to the bright orange hue which makes the little creature so conspicuous.

The newt usually keeps hidden among moss, or under leaves, or in decaying wood, or other damp and shady places; but after a rain, when the whole world is damp, it feels confidence enough to go out in the open, and hunt for food. For two and a half years it lives upon land and then returns to the water. When this impulse comes upon it, it may be far from any stream; but it seems to know instinctively where to go. Soon after it enters the water, it is again transformed in color, becoming olive-green above and buff below, although it still retains the red spots along the back, as mementos of its land life; and it also retains its pepper-like dots. Its tail develops a fin which extends along its back and is somewhat ruffled. In some mysterious way it develops the power to again breathe the air which is mixed with water.
The male has the hind legs very large and flat; the female is lighter in color and has more delicate and smaller legs. It is here in the water that the efts find their mates and finish careers which must have surely been hazardous. During its long and varied life, the eft often sheds its skin like the snake; it has a strange habit of swallowing its cast-off coat.

LESSON XLVIII

The Newt, Eft, or "Salamander"

Leading thought—The newts change their form three times to fit different modes of life. They are born in the water and at first have fins and gills like fishes. They then live on land, and have lungs for breathing air and lose their fins; later they go back to the water and again develop the power of breathing the oxygen contained in water, and also a fin.

Method—The little, orange eft or red-spotted salamander may be kept in an aquarium which has in it an object, as a stone or a clump of moss which projects above the water. For food it should be given small earthworms or leaves covered with plant lice. In this way it may be studied at leisure.

Observations—1. Look at the eft closely. Is it all the same color? How many spots upon its back and what colors are they? Are there the same number of spots on both sides? Are there any spots or dots besides these larger ones? How does the eft resemble a toad?

2. Is the head the widest part of the body? Describe the eyes, the shape and color of the pupil and of the iris. How does the eft wink? Do you think it can see well?

3. Can you see the nostrils? How does the throat move and why?

4. Are both pairs of legs the same size? How many toes on the front feet? How many toes on the hind feet? Does the eft toe-in with its front feet like a toad?

5. Does it move more than one foot at a time when walking? Does it use the feet on the same side in two consecutive steps? After putting forward the right front foot what foot follows next? Can it move backward?

6. Is the tail as long as the head and body together? Is the tail round or flat at the sides? How is it used to help the eft when traveling? Does the tail drag or is it lifted, or does it push by squirming?

7. How does the eft act when startled? Does it examine its surroundings? Do you think it can see and is afraid of you?

8. Why do we find these creatures only during wet weather? Why do people think they rain down?

9. What does the eft eat? How does it catch its prey? Does it shed its skin? How many kinds of efts have you seen?

10. From what kind of eft does the eft hatch? When is this egg laid? How does it look? On what is it fastened?

11. How many times during its life does the orange eft change color? What part of its life is spent upon land? What changes take place in its form when it leaves the water for life upon land, and what changes take place in its structure when it returns to the water?
IV. REPTILE STUDY

Yet when a child and barefoot; I more than once, at morn,
Have passed, I thought, a whiplash unbraided in the sun,
When, stooping to secure it, it wrinkled, and was gone.

—Emily Dickinson.

If the teacher could bring herself to take as much interest as did Mother Eve in that "subtile animal," as the Bible calls the serpent, she might, through such interest, enter the paradise of the boyish heart instead of losing a paradise of her own. How many teachers, who have an aversion for snakes, are obliged to teach small boys whose pet diversion is capturing these living ribbons and bringing them into the schoolroom stowed away not too securely in pockets!

In one of the suburban Brooklyn schools, boys of this ilk sought to frighten their teacher with their weird prisoners. But she was equal to the occasion, and surprised them by declaring that there were many interesting things to be studied about snakes, and forthwith sent to the library for books which discussed these reptiles; and this was the beginning of a nature-study club of rare efficiency and enterprise.

There are abroad in the land, many errors concerning snakes. Most people believe that they are all venomous, which is far from true. The rattlesnake still holds its own in rocky, mountainous places and the moccasin haunts the bayous of the southern coast; however, in most localities, snakes are not only harmless but are beneficial to the farmer. The superstition that if a snake is killed, its tail will live until sun-down, is general and has but slender foundation in the fact that snakes, being lower in their nerve-organization than mammals, the process of death is a slow one. Some people firmly believe that snakes spring or jump from the ground to seize their prey, which is quite false since no snake jumps clear of the ground as it strikes, nor does it spring from a perfect coil. Nor are snakes slimy, quite to the contrary, they are covered with perfectly dry scales. But the most general superstition of all is that, when a snake thrusts out its tongue, it is an act of animosity; the fact is, the tongue is a sense organ and is used as an insect uses its feelers or antennae, and the act is also supposed to aid the creature in hearing; thus when a snake thrusts out its tongue, it is simply trying to find out about its surroundings and what is going on.

Snakes are the only creatures able to swallow objects larger than themselves. This is rendered possible by the elasticity of the body walls, and the fact that snakes have an extra bone hinging the upper to the lower jaw, allowing them to spread widely; the lower jaw also separates at the middle of its front edge and spreads apart sidewise. In order to force a creature into a "bag" so manifestly too small, a special mechanism is needed; the teeth supply this by pointing backward, and thus assist in the swallowing. The snake moves by literally walking on the ends of its ribs, which are connected with the crosswise plates on its lower side; each of these crosswise plates has the hind edge projecting down so that it can hold to an object. Thus, the graceful, noiseless progress of the snake, is brought about by many of these crosswise plates worked by the movement of the ribs.
Some species of snakes simply chase their prey, striking at it and catching it in the open mouth, while others, like the black snake, wind themselves about their victims crushing them to death. Snakes can live a long time without food; many instances on record show that they have been able to exist a year or more without anything to eat. In our northern climate they hibernate in winter, going to sleep as soon as the weather becomes cold and not waking up until spring. As snakes grow, they shed their skins; this occurs only two or three times a year. The crested fly-catcher adorns its nest with these phantom snakes.

References—The Reptile Book, by Ditmars, gives interesting accounts of our common snakes; Mathew's Familiar Life of Field and Forest is also valuable. To add interest to the snake lessons let the children read "Kaas Hunting" and "Rikki Tikki Tavi" from Kipling's Jungle Books.

THE GARTER, OR GARDEN, SNAKE

Teacher's Story

A chipmunk, or a sudden-whirring quail,
Is startled by my step as on I fare.
A gartersnake across the dusty trail,
Glances and — is not there.—Riley.

GARTER snakes can be easily tamed, and are ready to meet friendly advances half way. A handsome yellow-striped, black garter lived for four years beneath our piazza and was very friendly and unafraid of the family. The children of the campus made it frequent visits, and never seemed to be weary of watching it; but the birds objected to it very much, although it never attempted to reach their nests in the vine above. The garter snakes are the most common of all, in our northeastern States. They vary much in color; the ground color may be olive, brown or black, and down the center of the back is usually a yellow, green or whitish stripe, usually bordered by a darker band of ground-color. On each side is a similar stripe, but not so brightly colored; sometimes the middle stripe, and sometimes the side stripes are broken into spots or absent; the lower side is greenish white or yellow. When fully grown this snake is about three feet in length.

The garters are likely to congregate in numbers in places favorable for hibernation, like rocky ledges or stony side-hills. Here each snake finds a safe crevice, or makes a burrow which sometimes extends a yard or more under ground. During the warm days of Indian summer, these winter hermits crawl out in the middle of the day and sun themselves, retiring again to their hermitages when the air grows chilly toward night; and when the cold weather arrives, they go to sleep and do not awaken until the first warm days of spring; then, if the sun shines hot, they crawl out and bask in its welcome rays.

After the warm weather comes, the snakes scatter to other localities more favorable for finding food, and thus these hibernating places are deserted during the summer. The banks of streams, and the edges of woods are places which furnish snakes their food, which consists of earthworms, insects, toads, salamanders, frogs, etc. The young are born late
in July and are about six inches long at birth; one mother may have in her brood from eleven to fifty snakelings; she stays with them during the fall to protect them, and there are many stories about the way the young ones run down the mother’s throat in case of attack; but, as yet, no scientist has seen this act, or placed it on record. The little snakes shift for their own food, catching small toads, earthworms and insects. If it finds food in plenty, the garter snake will mature in one year. Hawks, crows, skunks, weasels and other predacious animals seem to find the garter snake attractive food.

LESSON XLIX

The Garter, or Garden, Snake

Leading thought—The garter snake is a common and harmless little creature and has many interesting habits which are worth studying.

Method—A garter snake may be captured and placed in a box with a glass cover and thus studied in detail in the schoolroom, but the lesson should begin with observations made by the children on the snakes in their native haunts.

Observations—1. What are the colors and markings of your garter snake? Do the stripes extend along the head as well as the body? How long is it?

2. Describe its eyes, its ears, its nostrils and its mouth

3. If you disturb it how does it act? Why does it thrust its tongue out? What shape is its tongue?
4. In what position is the snake when it rests? Can you see how it moves? Look upon the lower side. Can you see the little plates extending crosswise? Do you think it moves by moving these plates? Let it crawl across your hand, and see if you can tell how it moves.

5. What does the garter snake eat? Did you ever see one swallow a toad? A frog? Did it take it head first or tail first?

6. Where does the garter spend the winter? How early does it appear in the spring?

7. At what time of year do you see the young snakes? Do the young ones run down the throat of the mother for safety when attacked? Does the mother snake defend her young?

8. What enemies has the garter snake?

"No life in earth or air or sky;
The sunbeams, broken silently,
On the bared rocks around me lie,—

Cold rocks with half-warmed lichens scarred,
And scales of moss; and scarce a yard
Away, one long strip, yellow-barred.

Lost in a cleft! 'Tis but a stride
To reach it, thrust its roots aside,
And lift it on thy stick astride!

Yet stay! That moment is thy grace!
For round thee, thrilling air and space,
A chattering terror fills the place!

A sound as of dry bones that stir,
In the dead valley! By you fir
The locust stops its noon-day whir!

The wild bird hears; smote with the sound.
As if by bullet brought to ground
On broken wing, dips, wheeling round!

The hare, transfixed, with trembling lip,
Halt breathless, on pulsating hip,
And palsied tread, and heels that slip.

Enough, old friend!—'tis thou. Forget
My heedless foot, nor longer fret
The peace with thy grim castanet!"

From "Crotalus" (The Rattlesnake), Bret Harte.
THE MILK SNAKE, OR SPOTTED ADDER

Teacher's Story

The grass divides as with a comb, a spotted shaft is seen,
And then it closes at your feet, and opens farther on.

—Emily Dickinson.

This is the snake which is said to milk cows, a most absurd belief; it would not milk a cow if it could, and it could not if it would. It has never yet been induced to drink milk when in captivity; and if it were very thirsty, it could not drink more than two teaspoonfuls of milk at most; thus in any case, its depredations upon the milk supply need not be feared. Its object, in frequenting milk houses and stables, is far other than the milking of cows, for it is an inveterate hunter of rats and mice and is thus of great benefit to the farmer. It is a constrictor, and squeezes its prey to death in its coils.

The ground color of the milk snake is pale gray, but it is covered with so many brown or dark gray saddle-shaped blotches, that they seem rather to form the ground-color; the lower side is white, marked with square black spots and blotches. The snake attains a length of about three feet when fully grown. Although it is called commonly the spotted adder, it does not belong to the adders at all, but to the family of the king snakes.

During July and August, the mother snake lays from seven to twenty eggs; they are deposited in loose soil, in moist rubbish, in compost heaps, etc. The egg is a symmetrical oval in shape and is about one and one-eighth inches long by a half inch in diameter. The shell is soft and white, like kid leather, and the egg resembles a puffball. The young hatch nearly two months after the eggs are laid, meanwhile the eggs have increased in size so that the snakelings are nearly eight inches long when they hatch. The saddle-shaped blotches on the young have much red in them. The milk snake is not venomous; it will sometimes, in defence, try to chew the hand of the captor, but the wounds it can inflict are very slight and heal quickly.

The milk snake, or spotted adder.
LESSON L.

The Milk Snake, or Spotted Adder

Leading thought—The milk snake is found around stables where it hunts for rats and mice but never milks the cows.

Method—Although the snake acts fiercely, it is perfectly harmless and may be captured in the hands and placed in a glass-covered box for a study in the schoolroom.

Observations—
1. Where is the milk snake found? Why is it called milk snake? Look at its mouth and see if you think it could possibly suck a cow. See if you can get the snake to drink milk.
2. What does it live upon? How does it kill its prey? Can the milk snake climb a tree?
3. Where does the mother snake lay her eggs? How do the eggs look? How large are they? How long are the little snakes when they hatch from the egg? Are they the same color as the old ones?
4. Describe carefully the colors and markings of the milk snake and explain how its colors protect it from observation. What are its colors on the underside?
5. Have you ever seen a snake shed its skin? Describe how it was done. How does the sloughed-off skin look? What bird always puts snake skins around its nest?

I have the same objection to killing a snake that I have to the killing of any other animal, yet the most humane man I know never omits to kill one.

Aug. 5, 1853.

The mower on the river meadows, when he comes to open his hay these days, encounters some overgrown water adder, full of young (?) and bold in defense of its progeny, and tells a tale when he comes home at night which causes a shudder to run through the village—how it came at him and he ran, and it pursued and overtook him, and he transfixed it with a pitchfork and laid it on a cock of hay, but it revived and came at him again. This is the story he tells in the shops at evening. The big snake is a sort of fabulous animal. It is always as big as a man’s arm and of indefinite length. Nobody knows exactly how deadly is its bite but nobody is known to have been bitten and recovered. Irishmen introduced into these meadows for the first time, on seeing a snake, a creature which they have seen only in pictures before, lay down their scythes and run as if it were the Evil One himself and cannot be induced to return to their work. They sigh for Ireland, where they say there is no venomous thing that can hurt you.

—Thoreau’s Journal.
THE WATER SNAKE

Teacher's Story

EVERY boy that goes fishing, knows the snake found commonly about mill-dams and wharves or on rocks and bushes near the water. The teacher will have accomplished a great work, if these boys are made to realize that this snake is a more interesting creature for study, than as an object to pelt with stones.

The water snake is a dingy brown in color, with cross-bands of brownish or reddish brown which spread out into blotches at the side. Its color is very protective as it lies on stones or logs in its favorite attitude of sunning itself. It is very local in its habits, and generally has a favorite place for basking and returns to it year after year on sunny days.

This snake lives mostly upon frogs and salamanders and fish; however, it preys usually upon fish of small value, so it is of little economic importance. It catches its victims by chasing, and seizing them in its jaws. It has a very keen sense of smell and probably traces its prey in this manner, something as a hound follows a fox. It is an expert swimmer, usually lifting the head a few inches above the water when swimming, although it is able to dive and remain below the water for a short time.

The water snake is a bluffer, and, when cornered, it flattens itself and strikes fiercely. But its teeth contain no poison and it can inflict only slight and harmless wounds. When acting as if it would “rather fight than eat,” if given a slight chance to escape, it will flee to the water like a “streak of greased lightning,” as any boy will assure you.
The water snake attains a length of about four feet. The young do not hatch from eggs, but are born alive in August and September; they differ much in appearance from their parents as they are pale gray in color, with jet-black cross-bands.

LESSON LI

The Water Snake

Leading thought—The water snake haunts the banks of streams because its food consists of creatures that live in and about water.

Method—If water snakes are found in the locality, encourage the boys to capture one without harming it, and bring it to school for observation. However, as the water snake is very local in its habits, and haunts the same place year after year, it will be better nature-study to get the children to observe it in its native surroundings.

Observations—1. Where is the water snake found? How large is the largest one you ever saw?
2. Why does the water snake live near water? What is its food? How does it catch its prey?
3. Describe how the water snake swims. How far does its head project above the water when swimming? How long can it stay completely beneath the water?
4. Describe the markings and colors of the water snake. How do these colors protect it from observation? How do the young look?
5. Does each water snake have a favorite place for sunning itself?
6. Where do the water snakes spend the winter?

May 12, 1858.

Found a large water adder by the edge of Farmer's large mudhole, which abounds with tadpoles and frogs, on which it was probably feeding. It was sunning on the bank and would face me and dart its head toward me when I tried to drive it from the water. It is barred above, but indistinctly when out of the water, so that it appears almost uniformly dark brown, but in the water, broad, reddish brown bars are seen, very distinctly alternating with very dark-brown ones. The head was very flat and suddenly broader than the neck behind. Beneath, it was whitish and reddish flesh-color. It was about two inches in diameter at the thickest part. The inside of its mouth and throat was pink. They are the biggest and most formidable-looking snakes that we have. It was awful to see it wind along the bottom of the ditch at last, raising wreaths of mud amid the tadpoles, to which it must be a very sea-serpent. I afterward saw another, running under Sam Barrett's grist-mill, the same afternoon. He said that he saw a water-snake, which he distinguished from a black snake, in an apple tree near by, last year, with a young robin in its mouth, having taken it from the nest. There was a cleft or fork in the tree which enabled it to ascend.

—Thoreau's Journal.
THE TURTLE

Teacher's Story

The Turtle is at heart a misanthrope; its shell is in itself proof of its owner's distrust of this world. But we need not wonder at this misanthropy, if we think for a moment of the creatures that lived on this earth, at the time when turtles first appeared. Almost any of us would have been glad of a shell in which to retire, if we had been contemporaries of the smilodon and other monsters of earlier geologic times.

When the turtle feels safe and walks abroad for pleasure, his head projects far from the front end of his shell, and the legs, so wide, and soft that they look as if they had no bones in them, project out at the side, while the little, pointed tail brings up an undignified rear; but frighten him and at once head, legs and tail all disappear, and even if we turn him over, we see nothing but the tip of the nose, the claws of the feet and the tail turned deftly sidewise. When frightened, he hisses threateningly; the noise seems to be made while the mouth is shut, and the breath emitted through the nostrils.

Carapace of painted terrapin in retirement. Plastron of same terrapin.

The upper shell of the turtle is called the carapace and the lower shell, the plastron. There is much difference in the different species of turtles in the shape of the upper shell and the size and shape of the lower one. In most species the carapace is sub-globular but in some it is quite flat. The upper shell is grown fast to the backbone of the animal, and the lower shell to the breast bone. The markings and colors of the shell offer excellent subjects for drawing. The painted terrapin has a red-mottled border to the shell, very ornamental; the wood turtle has a shell made up of plates each of which is ornamented with concentric ridges; and the box-turtle has a front and rear trap-door, hinged to the plastron, which can be pulled up against the carapace when the turtle wishes to retire, thus covering it entirely.
The turtle's head is decidedly snakelike. Its color differs with different species. The wood turtle has a triangular, horny covering on the top of the head, in which the color and beautiful pattern of the shell are repeated; the underparts are brick-red with indistinct yellowish lines under the jaw. The eyes are black with a yellowish iris, which somehow gives them a look of intelligence. The turtle has no eyelids like our own, but has a nictitating membrane which comes up from below and completely covers the eye; if we seize the turtle by the head and attempt to touch its eyes, we can see the use of this eyelid. When the turtle winks, it seems to turn the eyeball down against the lower lid.

The sense of smell in turtles is not well developed, as may be guessed by the very small nostrils, which are mere pin-holes in the snout. The mouth is a more or less hooked beak, and is armed with cutting edges instead of teeth. The constant pulsation in the throat is caused by the turtle swallowing air for breathing.

The turtle's legs, although so large and soft, have bones within them, as the skeleton shows. The claws are long and strong; there are five claws on the front and four on the hind feet. Some species have a distinct web between the toes; in others, it is less marked, depending upon whether the species lives mostly in water or out of it. The color of the turtle's body varies with the species; the body is covered with coarse, rough skin made up of various-sized plates.

The enemies of turtles are the larger fishes and other turtles. Two turtles should never be kept in the same aquarium, since they eat each others' tails and legs with great relish. They feed upon insects, small fish, or almost anything soft-bodied which they can find in the water; they are especially fond of earthworms. The species which frequent the land, feed upon tender vegetation and also eat berries. In an aquarium, a turtle should be fed earthworms, chopped fresh beef, lettuce leaves and berries. The wood turtle is especially fond of cherries.
The aquarium should always have in it a stone or some other object projecting above the water, so that the turtle may climb out, if it chooses. In winter, turtles bury themselves in the ooze at the bottom of ponds and streams. Their eggs have white leathery shells, are oblong in shape, and are buried by the mother in the sand or soil near a stream or pond. The long life of turtles is a well authenticated fact, dates carved upon their shells show them to have attained the age of thirty or forty years.

The following are, perhaps, the most common species of turtles:

(a) *The Snapping Turtle*—This sometimes attains a shell 14 inches long and a weight of forty pounds. It is a vicious creature and inflicts a severe wound with its sharp, hooked beak; it should not be used for a nature-study lesson unless the specimen is very young.

(b) *The Mud Turtle*—The musk turtle and the common mud turtle both inhabit slow streams and ponds; they are truly aquatic and only come to shore to deposit their eggs. They cannot eat, unless they are under water, and they seek their food in the muddy bottoms. The musk turtle when handled, emits a very strong odor; it has on each side of the head two broad yellow stripes. The mud turtle has no odor. Its head is ornamented with greenish yellow spots.

(c) *The Painted Terrapin, or Pond Turtle*—This can be determined by the red mottled border of its shell. It makes a good pet, if kept in an aquarium by itself, but will destroy other creatures. It will eat meat or chopped fish, and is fond of earthworms and soft insects.

(d) *The Spotted Turtle*—This has the upper shell black with numerous round yellow spots upon it. It is common in ponds and marshy streams and its favorite perch is, with many of its companions, upon a log. It feeds under water, eating insect larvae, dead fish and vegetation. It likes fresh lettuce.

(e) *The Wood Terrapin*—This is our most common turtle; it is found in damp woods and wet places, since it lives largely upon the land. Its upper shell often reaches a length of six and one-half inches and is made up of many plates, ornamented with concentric ridges. This is the turtle upon whose shell people carve initials and dates and then set it free. All the fleshy parts of this turtle, except the top of the head and the limbs, are brick-red. It feeds on tender vegetables, berries and insects. It makes an interesting pet and will soon learn to eat from the fingers of its master.

(f) *The Box-Turtle*—This is easily distinguished from the others, because the front and rear portions of the lower shell are hinged so that they can be pulled up against the upper shell. When this turtle is attacked, it draws into the shell and closes both front and back doors, and is very safe from its enemies. It lives entirely upon land and feeds upon berries, tender vegetation and insects. It lives to a great age.

(g) *The Soft-shelled Turtle*—These are found in streams and canals. The upper shell looks as if it were of one piece of soft leather, and resembles a griddle-cake. Although soft-shelled, these turtles are far from soft-tempered, and must be handled with care.
Leading thought—
The turtle's shell is for the purpose of protecting its owner from the attack of enemies. Some turtles live upon land and others in water.

Method—A turtle of any kind, in the schoolroom, is all that is needed to make this lesson interesting.

Observations—
1. How much can you see of the turtle when it is walking? If you disturb it what does it do? How much of it can you see then? Can you see more of it from the lower side than the upper? What is the advantage to the turtle of having such a shell?

2. Compare the upper shell with the lower as follows: How are they shaped differently? What is their difference in color? Would it be a disadvantage to the turtle if the upper shell were as light colored as the lower? Why? Make a drawing of the upper and the lower shell showing the shape of the plates of which they are composed. Where are the two grown together?

3. Is the border of the upper shell different from the central portion in color and markings? Is the edge smooth or scalloped?

4. How far does the turtle's head project from the front of the shell? What is the shape of the head? With what colors and pattern is it marked? Describe the eyes. How are they protected? How does the turtle wink? Can you discover the little eyelid which comes up from below to cover the eye?

5. Describe the nose and nostrils. Do you think it has a keen sense of smell?

6. Describe the mouth. Are there any teeth? With what does it bite off its food? Describe the movement of the throat. Why is this constant pulsation?

7. What is the shape of the leg? How is it marked? How many claws on the front feet? Are any of the toes webbed? On which feet are the webbed toes? Why should they be webbed? Describe the way a turtle swims. Which feet are used for oars?

8. Describe the tail. How much can be seen from above when the turtle is walking? What becomes of it, when the turtle withdraws into its shell?

A snapping turtle.
Photo by J. T. Lloyd.
9. How much of the turtle's body can you see? What is its color? Is it rough or smooth?
10. What are the turtle's enemies? How does it escape from them? What noise does the turtle make when frightened or angry?
11. Do all turtles live for part of the time in water? What is their food and where do they find it? Write an account of all the species of turtles that you know.
12. How do turtle eggs look? Where are they laid? How are they hidden?

V. MAMMAL STUDY

OR some inexplicable reason, the word animal, in common parlance, is restricted to the mammals. As a matter of fact, the bird, the fish, the insect and the snake have as much right to be called animals as has the squirrel or the deer. And while I believe that much freedom in the matter of scientific nomenclature is permissible in nature-study, I also believe that it is well for the child to have a clearly defined idea of the classes into which the animal kingdom is divided; and I would have him gain this knowledge by noting how one animal differs from another rather than by studying the classification of animals in books. He sees that the fish differs in many ways from the bird and that the toad differs from the snake; and it will be easy for him to grasp the fact that the mammals differ from all other animals in that the young are nourished by milk produced for this purpose in the breasts of the mother; when he understands this, he can comprehend how such diverse forms as the whale, the cow, the bat, and human beings are akin.
THE COTTON-TAIL RABBIT

Teacher's Story

"The Bunnies are a jeeble folk whose weakness is their strength. To shun a gun a Bun will run to almost any length."—Oliver Herford.

It is well for Molly Cotton-tail and her family that they have learned to shun more than guns for almost every predatory animal and bird makes a dinner of them on every possible occasion. But despite these enemies, moreover, with the addition of guns, men and dogs, the cotton-tail lives and flourishes in our midst. A "Molly" raised two families last year in a briar-patch back of our garden on the Cornell Campus, where dogs of many breeds abound; and after each fresh fall of snow this winter we have been able to trace our bunny neighbors in their night wanderings around the house, beneath the spruces and in the orchard.

The track consists of two long splashes, paired, and between and a little behind them, two smaller ones; the rabbit uses its front feet as a boy uses a vaulting pole and lands both hind feet on each side and ahead of them; owing to the fact that the bottoms of the feet are hairy the print is not clear-cut. When the rabbit is not in a hurry it has a peculiar lope, but when frightened it makes long jumps. The cotton-tails are night wanderers and usually remain hidden during the day. In summer, they feed on clover or grass or other juicy herbs and show a fondness for sweet apples and fresh cabbage; in our
garden last summer Molly was very considerate. She carefully pulled all the grass out of the garden-cress bed, leaving the salad for our enjoyment. In winter, the long, gnawing teeth of the cotton-tail are sometimes used to the damage of fruit trees and nursery stock since the rabbits are obliged to feed upon bark in order to keep alive.

The long, strong hind legs and the long ears tell the whole bunny story. Ears to hear the approach of the enemy, and legs to propel the listener by long jumps to a safe retreat. The attitude of the ears is a good indication of the bunny's state of mind; if they are set back to back and directed backward, they indicate placidity, but a placidity that is always on guard; if lifted straight up they signify attention and anxiety; if one is bent forward and the other backward the meaning is: "Now just where did that sound come from?" When running or when resting in the form, the ears are laid back along the neck. When the cotton-tail stands up on its haunches with both ears erect, it looks very tall indeed.

Not only are the ears always alert, but also the nose; the nostrils are partially covered and in order to be always sure of getting every scent they wabble constantly, the split upper lip aiding in this performance; when the rabbit is trying to get a scent it moves its head up and down in a sagacious, apprehensive manner.

The rabbit has an upper and lower pair of incisors like other rodents, but on the upper jaw there is a short incisor on each side of the large teeth; these are of no use now but are inherited from some ancestor which found them useful. There are at the back of each side of the upper jaw six grinding teeth, and five on each side of the lower jaw. The split upper lip allows the free use of the upper incisors. The incisors are not only used for taking the bark from trees, but also for cutting grass and other food. The rabbit has a funny way of taking a stem of grass or clover at the end and with much wabbling of lips, finally taking it in, meanwhile chewing it with a sideways motion of the jaws. The rabbits' whiskers are valuable as feelers, and are always kept on the qui vive for impressions; when two cotton-tails meet each other amicably, they rub whiskers together. The eyes are large and dark and placed on the bulge at the side of the head, so as to command the view both ways. Probably a cotton-tail winks, but I never caught one in the act.

The strong hind legs of the rabbit enable it to make prodigious jumps, of eight feet or more; this is a valuable asset to an animal that escapes its enemies by running. The front feet are short and cannot be turned inward like those of the squirrel, to hold food. There are five toes on the front feet, and four on the hind feet; the hair on the bottom of the feet is a protection, much needed by an animal which sits for long periods upon the snow. When sleeping, the front paws are folded under and the rabbit rests on the entire hind foot, with the knee bent, ready for a spring at the slightest alarm; when awake, it rests on the hind feet and front toes; and when it wishes to see if the coast is clear, it rises on its hind feet, with front paws drooping.

The cotton-tail has a color well calculated to protect it from observation; it is brownish-gray on the back and a little lighter along the sides, grayish under the chin and whitish below; the ears are edged with black, and the tail when raised shows a large, white fluff at the rear. The general color of the rabbit fits in with natural surroundings; since the cotton-tail often escapes its enemies by "freezing," this color makes the scheme work
Mammal Study

well. I once saw a marsh hare, on a stone in a brook, freezing most successfully. I could hardly believe that a living thing could seem so much like a stone; only its bright eyes revealed it to us.

The rabbit cleans itself in amusing ways. It shakes its feet, one at a time, with great vigor and rapidity to get off the dirt and then licks them clean. It washes its face with both front paws at once. It scratches its ear with the hind foot, and pushes it forward so that it can be licked; it takes hold of its fur with its front feet to pull it around within reach of the tongue.

The cotton-tail does not dig a burrow, but sometimes occupies the deserted burrow of a woodchuck or skunk. Its nest is called a "form," which simply means a place beneath a cover of grass or briars, where the grass is beaten down or eaten out for a space large enough for the animal to sit. The mother makes a soft bed for the young, using grass and her own hair for the purpose; and she constructs a coarse felted coverlet, under which she tucks her babies with care, every time she leaves them. Young rabbits are blind at first, but when about three weeks old, are sufficiently grown to run quite rapidly. Although there may be five or six in a litter, yet there are so many enemies that only a few escape.

Fox, mink, weasel, hawk, owl and snake all relish the young cotton-tail if they can get it. Nothing but its runways through the briars can save it. These roads wind in and out and across, twisting and turning perplexingly; they are made by cutting off the grass stems, and are just wide enough for the rabbit's body. However, a rabbit has weapons and can fight if necessary; it leaps over its enemy, kicking it on the back fiercely with its great hind feet. Mr. Seton tells of this way of conquering the black snake, and Mr. Sharp saw a cat completely vanquished by the same method. The rabbit can also bite, and when two males are fighting, they bite each other savagely. Mr. E. W. Cleeves told me of a Belgian doe which showed her enmity to cats in a peculiar way. She would run after any cats that came in sight, butting them like a billy-goat. The cats soon learned her tricks, and would climb a tree as soon as they caught sight of her. The rabbit's sound of defiance, is thumping the ground with the strong hind foot. Some have declared that the front feet are used also for stamping; although I have heard this indignant thumping more than once, I could not see the process. The cotton-tail is a hare, while the common domestic rabbit is a true rabbit. The two differ chiefly in the habits of nesting; the hares rest and nest in forms, while the rabbit makes burrows, digging rapidly with the front feet.

Not the least of tributes to the rabbit's sagacity, are the negro folk-stories told by Uncle Remus, wherein Bre'r Rabbit, although often in trouble, is really the most clever of all the animals. I have often thought

Rabbit tracks.
when I have seen the tactics which rabbits have adopted to escape dogs, that we in the North have under-rated the cleverness of this timid animal. In one instance at least that came under our observation, a cotton-tail led a dog to the verge of a precipice, then doubled back to safety, while the dog went over, landing on the rocks nearly three hundred feet below.

LESSON LIII
THE COTTON-TAIL RABBIT

Leading thought—
The cotton-tail thrives amid civilization; its color protects it from sight; its long ears give it warning of the approach of danger; and its long legs enable it to run by swift, long leaps. It feeds upon grasses, clover, vegetables and other herbs.

Method—This study may be begun in the winter, when the rabbit tracks can be observed and the haunts of the cotton-tail discovered. If caught in a box trap, the cotton-tail will become tame if properly fed and cared for, and may thus be studied at close range. The cage I have used for rabbits as thus caught, is made of wire screen, nailed to a frame, making a wire-covered box, two feet high and two or three feet square, with a door at one side and no bottom. It should be placed upon oil-cloth or linoleum, and thus may be moved to another carpet when the floor needs cleaning. If it is impossible to study the cotton-tail, the domestic rabbit may be used instead.

Observations—1. What sort of tracks does the cotton-tail make in the snow? Describe and sketch them. Where do you find these tracks? How do you know which way the rabbit was going? Follow the track and see if you can find where the rabbit went. When were these tracks made, by night or by day? What does the rabbit do during the day? What does it find to eat during the winter? How are its feet protected so that they do not freeze in the snow?

2. What are the two most noticeable peculiarities of the rabbit? Of what use are such large ears? How are the ears held when the rabbit is resting? When startled? When not quite certain about the direction of the noise? Explain the reasons for these attitudes. When the rabbit wishes to make an observation to see if there is danger coming, what does it do? How does it hold its ears then? How are the ears held when the animal is running?

3. Do you think the rabbit has a keen sense of smell? Describe the movements of the nostrils and explain the reason. How does it move its head to be sure of getting the scent?
4. What peculiarity is there in the upper lip? How would this be an aid to the rabbit when gnawing? Describe the teeth; how do these differ from those of the mouse or squirrel? Of what advantage are the gnawing teeth to the rabbit? How does it eat a stem of grass? Note the rabbit’s whiskers. What do you think they are used for?

5. Describe the eyes. How are they placed so that the rabbit can see forward and backward? Do you think that it sleeps with its eyes open? Does it wink?

6. Why is it advantageous to the rabbit to have such long, strong, hind legs? Compare them in size with the front legs. Compare the front and hind feet. How many toes on each? How are the bottoms of the feet protected? Are the front feet ever used for holding food like the squirrel’s? In what position are the legs when the rabbit is resting? When it is standing? When lifted up for observation?

7. How does the cotton-tail escape being seen? Describe its coat. Of what use is the white fluff beneath the tail? Have you ever seen a wild rabbit “freeze”? What is meant by freezing and what is the use of it?

8. In making its toilet how does the rabbit clean its face, ears, feet, and fur?

9. What do the cotton-tails feed upon during the summer? During the winter? Do they ever do much damage?

10. Describe the cotton-tail’s nest. What is it called? Does it ever burrow in the ground? Does it ever use a second-hand burrow? Describe the nest made for the young by the mother. Of what is the bed composed? Of what is the coverlet made? What is the special use of the coverlet? How do the young cotton-tails look? How old are they before they are able to take care of themselves?

11. What are the cotton-tail’s enemies? How does it escape them? Have you ever seen the rabbit roads in a briar patch? Do you think that a dog or fox could follow them? Do rabbits ever fight their enemies? If so, how? How do they show anger? Do they stamp with the front or the hind foot?

12. Tell how the cotton-tail differs in looks and habits from the common tame rabbit. How do the latter dig their burrows? How many breeds of tame rabbits do you know?

13. Write or tell stories on the following topics: “A Cotton-tail’s Story of its Own Life Until it is a Year Old;” “The Jack-rabbit of the West;” “The Habits of the White Rabbit or Varying Hare;” “The Rabbit in Uncle Remus’ Tales.”

Supplementary reading—“Raggylug” and “Little War Horse,” Thompson-Seton; Squirrels and Other Fur Bearer, Burroughs; Watchers in the Woods, Sharp; American Animals, Stone & Cram; Familiar Life in Field and Forest, Mathews; Sharp Eyes, Gibson; Neighbors with Claws and Hoofs, Johonnot; True Tales of Birds and Beasts, Jordan; Uncle Remus Stories, especially The Tar Baby, which emphasizes the fact that the rabbits’ runways are in the protecting briar-patch.
THE MUSKRAT

Teacher’s Story

"Having finished this first course of big-neck clams, they were joined by a third muskrat, and, together, they filed over the bank and down into the meadow. Shortly two of them returned with great mouthfuls of the mud-bleached ends of calamus-blades. Then followed the washing.

They dropped their loads upon the plank, took up the stalks, pulled the blades apart, and soured them up and down in the water, rubbing them with their paws until they were as clean and white as the whitest celery one ever ate. What a dainty picture! Two little brown creatures, humped on the edge of a plank, washing calamus in moonlit water!"—Dallas Lore Sharp.

RACKING is a part of every boy’s education who aspires to a knowledge of wood lore; and a boy with this accomplishment is sure to be looked upon with great admiration by other boys, less skilled in the interpretation of that writing made by small feet, on the soft snow or on the mud of stream margins. To such a boy, the track of the muskrat is well known, and very easily recognized.

The muskrat is essentially a water animal, and therefore its tracks are to be looked for along the edges of ponds, streams or in marshes. Whether the tracks are made by walking or jumping, depends upon the depth of the snow or mud; if it is deep, the animal jumps, but in shallow snow or mud, it simply runs along. The tracks show the front feet to be smaller.
than the hind ones. The muskrat track is, however, characterized by the
tail imprint. When the creature jumps through the snow, the mark of
the tail follows the paired imprints of the feet; when it walks, there is a
continuous line made by this strong, naked tail. This distinguishes the
track of the muskrat from that of the mink, as the bushy tail of the latter
does not make so distinct a mark. Measuring the track, is simply a
device for making the pupils note its size and shape more carefully. The
tracks may be looked for during the thaws of March or February, when
the muskrats come out of the water to seek food.

In appearance the muskrat is peculiar. The body is usually about a
foot in length and the tail about eight inches. The body is stout and
thickset, the head is rounded and looks like that of a giant meadow
mouse; the eyes are black and shining; the ears are short and close to the
head; the teeth, like those of other rodents, consist of a pair of front
teeth on each jaw, then a long, bare space and four grinders on each side.
There are long sensitive hairs about the nose and mouth, like the whiskers
of mice.

The muskrat's hind legs are much larger and stronger than the front
ones; and too, the hind feet are much longer than the front feet and have
a web between the toes; there are also stiff hairs which fill the space
between the toes, outside the web, thus making this large hind foot an
excellent swimming organ. The front toes are not webbed and are used
for digging. The claws are long, stout and sharp. The tail is long, stout
and flattened at the sides; it has little or no fur upon it but is covered
with scales; it is used as a scull and also as a rudder when the muskrat is
swimming.

The muskrat's outer coat consists of long, rather coarse hairs; its
under coat is of fur, very thick and fine, and although short, it forms a
waterproof protection for the body of the animal. In color, the fur is
dark brown above with a darker streak along the middle of the back;
beneath, the body is grayish changing to whitish on the throat and lips,
with a brown spot on the chin. In preparing the pelts for commercial
use, the long hairs are plucked out leaving the soft, fine under coat, which
is dyed and sold under the name of "electric seal."

The muskrat is far better fitted by form, for life in the water than upon
the land. Since it is heavy-bodied and short-legged, it cannot run rapidly
but its strong, webbed hind feet are most efficient oars, and it swims
rapidly and easily; for rudder and propeller the strong, flattened tail
serves admirably, while the fine fur next the body is so perfectly water-
proof that, however much the muskrat swims or dives, it is never wet.
It is a skillful diver and can stay under water for several minutes; when
swimming, its nose and sometimes the head and the tip of the tail appear
on the surface of the water.

The food of muskrats is largely roots, especially those of the sweet flag
and the yellow lily. They also feed on other aquatic plants and are fond
of the fresh-water shell-fish. Mr. Sharp tells us, in one of his delightful
stories, how the muskrats wash their food by soosing it up and down in
water many times before eating it. Often, a muskrat chooses some
special place upon the shore which it uses for a dining-room, bringing
there and eating pieces of lily root or fresh-water clams, and leaving the
debris to show where it habitually dines. It does most of its hunting for food
at night, although sometimes it may be seen thus employed during the day.
The winter lodge of the muskrat is a most interesting structure. A foundation of tussocks of rushes, in a stream or shallow pond, is built upon with reeds plastered with mud, making a rather regular dome which may be nearly two or three feet high; or, if many-chambered, it may be a grand affair of four or five feet elevation; but it always looks so much like a natural hummock that the eye of the uninitiated never regards it as a habituation. Always beneath this dome and above the water line, is a snug, covered chamber carpeted with a soft bed of leaves and moss, which has a passage leading down into the water below, and also has an air-hole for ventilation. In these cabins, closely cuddled together, three or four in a chamber, the muskrats pass the winter. After the pond is frozen they are safe from their enemies and are always able to go down into the water and feed upon the roots of water plants. These cabins are sometimes built in the low, drooping branches of willows or on other objects.

Whether the muskrat builds itself a winter lodge or not, depends upon the nature of the shore which it inhabits; if it is a place particularly fitted for burrows, then a burrow will be used as a winter retreat; but if the banks are shallow, the muskrats unite in building cabins. The main entrance to the muskrat burrow is always below the surface of the water, the burrow slanting upward and leading to a nest well lined, which is above the reach of high water; there is always an air hole above, for ventilating this nest, and there is also often a passage, with a hidden entrance, leading out to dry land.

The flesh of the muskrat is delicious, and therefore the animal has many enemies; foxes, weasels, dogs, minks and also hawks and owls prey upon it. It escapes the sight of its enemies as does the mouse, by having the color of its fur not noticeable; when discovered, it escapes its enemies by swimming, although when cornered, it is courageous and fights fiercely, using its strong incisors as weapons. In winter, it dwells in safety when the friendly ice protects it from all its enemies except the mink; but it is exposed to great danger when the streams break up in spring, for it is then often driven from its cabin by floods, and preyed upon while thus helplessly exposed. The muskrat gives warning of danger to its fellows by splashing the water with its strong tail.
It is called muskrat because of the odor, somewhat resembling musk, which it exhales from two glands on the lower side of the body between the hind legs; these glands may be seen when the skin is removed, which is the too common plight of this poor creature, since it is hunted mercilessly for its pelt.

The little muskrats are born in April and there are usually from six to eight in a litter. Another litter may be produced in June or July and a third in August or September. It is only thus, by rearing large families often, that the muskrats are able to hold their own against the hunters and trappers and their natural enemies.

LESSON LIV

The Muskrat

Leading thought—The muskrat, while a true rodent, is fitted for life in the water more than for life upon the land. Its hind feet are webbed for use as oars and its tail is used as a rudder. It builds lodges of mud, cat-tails and rushes in which it spends the winter.

Method—It might be well to begin this work by asking for observations on the tracks of the muskrat which may be found about the edges of almost any creek, pond or marsh. If there are muskrat lodges in the region they should be visited and described. For studying the muskrat's form a live muskrat in captivity is almost necessary. If one is trapped
with a "figure four" it will not be injured and it may be made more or less tame by feeding it with sweet apples, carrots and parsnips. The pupils can thus study it at leisure although they should not be allowed to handle the creature as it inflicts very severe wounds and is never willing to be handled. If a live muskrat cannot be obtained perhaps some hunter in the neighborhood will supply a dead one for this observation lesson.

While studying the muskrat the children should read all the stories of beavers which are available as the two animals are very much alike in their habits.

Observations—1. In what locality have you discovered the tracks of the muskrat? Describe its general appearance. Measure the muskrat's track as follows: (a) Width and length of the print of one foot; (b) the width between the prints of the two hind feet; (c) the length between the prints made by the hind feet in several successive steps or jumps.

2. Was the muskrat's track made when the animal was jumping or walking? Can you see in it a difference in the size of the front and hind feet? Judging from the track, where do you think the muskrat came from? What do you think it was hunting for?

3. What mark does the tail make in the snow or mud? Judging by its imprint, should you think the muskrat's tail was long or short, bare or brushy, slender or strong?

4. How long is the largest muskrat you ever saw? How much of the whole length is tail? Is the general shape of the body short and heavy or long and slender?

5. Describe the muskrat's eyes, ears and teeth. For what are the teeth especially fitted? Has the muskrat whiskers like mice and rats?

6. Compare the front and hind legs as to size and shape. Is there a web between the toes of the hind feet? What does this indicate? Do you think that the muskrat is a good swimmer?

7. Describe the muskrat fur. Compare the outer and under coat. What is its color above and below? What is the name of muskrat fur in the shops?

8. Describe the tail. What is its covering? How is it flattened? What do you think this strong, flattened tail is used for?

9. Do you think the muskrat is better fitted to live in the water than on land? How is it fitted to live in the water in the following particulars: Feet? Tail? Fur?

10. How much of the muskrat can you see when it is swimming? How long can it stay under water when diving?

11. What is the food of the muskrat? Where does it find it? How does it prepare the food for eating? Does it seek its food during the night or day? Have you ever observed the muskrat's dining room? If so, describe it.

12. Describe the structure of the muskrat's winter lodge, or cabin, in the following particulars: Its size. Where built? Of what material? How many rooms in it? Are these rooms above or below the water level? Of what is the bed made? How is the nest ventilated? How is it arranged so that the entrance is not closed by the ice? Is such a home built by one or more muskrats? How many live within it? Do the muskrats always build these winter cabins? What is the character of the shores where they are built?
13. Describe the muskrat's burrow in the bank in the following particulars: Is the entrance above or below water? Where and how is the nest made? Is it ventilated? Does it have a back door leading out upon the land?

14. What are the muskrat's enemies? How does it escape them? How does it fight? Is it a courageous animal? How does the muskrat give warning to its fellows when it perceives danger? At what time of year is it comparatively safe? At what time is it exposed to greatest danger?

15. Why is this animal called muskrat? Compare the habits of muskrats with those of beaver and write an English theme upon the similarity of the two.

16. At what time of year do you find the young muskrats? How many in a litter?

17. Read Farmers' Bulletin No. 396 of the U. S. Dept. of Agriculture and write an English theme on the destructive habits of muskrats and the economic uses of these animals.

Supplementary reading—Familiar Wild Animals, Lottridge; Little Beasts of Field and Wood, Cram; Squirrels and other Fur-bearers, Burroughs; "The Builders" in Ways of Wood Folk, Long.
The house mouse feeds upon almost anything which people like to eat.

THE HOUSE MOUSE

Teacher’s Story

Somewhere in the darkness a clock strikes two;
And there is no sound in the sad old house,
But the long veranda dripping with dew,
And in the wainscot—a mouse.—Bret Harte.

ERE mouse-gray a less inconspicuous color, there would be fewer mice; when a mouse is running along the floor, it is hardly discernible, it looks so like a flitting shadow; if it were black or white or any other color, it would be more often seen and destroyed. Undoubtedly, it is owing to the fact that its soft fur has this shadowy color, that this species has been able to spread over the world.

At first glance one wonders what possible use a mouse can make of a tail which is as long as its body, but a little careful observation will reveal the secret. The tail is covered with transverse ridges and is bare save for sparse hairs, except toward the tip. Dr. Ida Reveley first called my attention to the fact that the house mouse uses its tail in climbing. I verified this interesting observation, and found that my mouse used the tail for aid when climbing a string. He would go up the string, hand over hand, like a sailor, then in trying to stretch to the edge of his jar, he invariably wound his tail about the string two or three times, and hanging to the string with the hind feet and tail, would reach far out with his head and front feet. Also, when clinging to the edge of the cover of the jar, he invariably used his tail as a brace against the side of the glass, so that it pressed hard for more than half its length. Undoubtedly the tail is of great service when climbing up the sides of walls.
The tail is also of some use, when the mouse jumps directly upwards. The hind legs are very much longer and stronger than the front legs. The hind feet are also much longer and larger than the front feet; and although the mouse, when it makes its remarkable jumps, depends upon its strong hind legs, I am sure that often the tail is used as a brace to guide and assist the leap. The feet are free from hairs but are downy; the hind foot has three front toes, a long toe behind on the outside and a short one on the inside. The claws are fairly long and very sharp so that they are able to cling to almost anything but glass. When exploring, a mouse stands on its hind feet, folding its little front paws under its chin while it reaches up ready to catch anything in sight; it can stretch up to an amazing height. It feeds upon almost anything which people like to eat and, when eating, holds its food in its front paws like a squirrel.

The thin, velvety ears are flaring cornucopias for taking in sound; the large, rounded outer ear can be moved forward or back to test the direction of the noise. The eyes are like shining, black beads; and if a mouse can wink, it does it so rapidly as not to be discernible. The nose is long, inquisitive, and always sniffing for new impressions. The whiskers are delicate and probably sensitive. The mouth is furnished with two long, curved gnawing teeth at the front of each jaw, then a bare space, and four grinding teeth on each side, above and below, like the teeth of woodchucks and other rodents. The gnawing teeth are very strong and enable the mouse to gnaw through board partitions and other obstacles.

The energy with which the mouse cleans itself is inspiring to behold. It nibbles its fur and licks it with fervor, reaching around so as to get at it from behind, and taking hold with its little hands to hold firm while it cleans. When washing its face and head, it uses both front feet, licking them clean and rubbing them both simultaneously from behind the ears down over the face. It takes its hind foot in both front feet and nibbles and licks it. It scratches the back of its head with its hind foot.

Young mice are small, downy, pink and blind when born. The mother makes for them a nice, soft nest of pieces of cloth, paper, grass, or whatever is at hand; the nest is round like

Young mice, blind, pink and hairless.
a ball and at its center is nestled the family. Mice living in houses, have runways between the plaster and the outside, or between ceiling and floor. In winter they live on what food they can find, and upon flies or other insects hibernating in our houses. The house mice sometimes live under stacks of corn or grain in the fields, but usually confine themselves to houses or barns. They are thirsty little fellows and they like to make their nests within easy reach of water. Our house mice came from ancestors which lived in Asia originally; they have always been great travelers and they have followed men wherever they have gone, over the world. They came to America on ships with the first explorers and the Pilgrim fathers. They now travel back and forth, crossing the ocean in ships of all sorts. They also travel across the continent on trains. Wherever our food is carried they go; and the mouse, which you see in your room one day, may be a thousand miles away within a week. They are clever creatures, and learn quickly to connect cause and effect. For two years, I was in an office in Washington, and as soon as the bell rang for noon, the mice would appear instantly, hunting waste-baskets for scraps of lunch. They had learned to connect the sound of the bell with food.

Of all our wild mice, the white-footed or deer mouse is the most interesting and attractive. It is found almost exclusively in woods and is quite different in appearance from other mice. Its ears are very large; its fur is fine and beautiful and a most delicate gray color. It is white beneath the head and under the sides of the body. The feet are pinkish, the front paws have short thumbs, while the hind feet are very much longer and have a long thumb looking very much like an elfin hand in a gray-white silk glove. On the bottom of the feet are callous spots which are pink and serve as foot pads. It makes its nest in hollow trees and stores nuts for winter use. We once found two quarts of shelled beech nuts in such a nest. It also likes the hips of the wild rose and many kinds of berries; it sometimes makes its summer home in a bird’s nest, which it roofs over to suit itself. The young mice are carried, hanging to the mother’s breasts. As an inhabitant of summer cottages, white-foot is cunning and mischievous; it pulls cotton out of quilts takes covers off of jars, and as an explorer, is equal to the squirrel. I once tried to rear some young deer mice by feeding them warm milk with a pipette; although their eyes were not open, they invariably washed their faces after each meal, showing that neatness was bred in the bone. This mouse has a musical voice and often chirps as sweetly as a bird. Like the house mouse it is more active at night.

The meadow mouse is the one that makes its run-ways under the snow, making strange corrugated patterns over the ground which attract our attention in spring. It has a heavy body, short legs, short ears and short tail. It is brownish or blackish in color. It sometimes digs burrows straight into the ground, but more often makes its nest beneath sticks and

![Track of white-footed mouse.](image-url)
stones or stacks of corn. It is the nest of this field mouse which the bumblebee so often takes possession of, after it is deserted. The meadow mouse is a good fighter, sitting up like a woodchuck and facing its enemy bravely. It needs to be courageous, for it is preyed upon by almost every creature that feeds upon small animals; the hawks and owls especially are its enemies. It is well for the farmer that these mice have so many enemies, for they multiply rapidly and would otherwise soon overrun and destroy the grain fields. This mouse is an excellent swimmer.

A part of winter work, is to make the pupils familiar with the tracks of the meadow mice and how to distinguish them from other tracks.

Trapping Field Mice—Probably wild animals have endured more cruelty through the agency of traps than through any other form of human persecution. The savage steel traps often catch the animal by the leg, holding it until it gnaws off the imprisoned foot, and thus escapes maimed and handicapped for its future struggle for food; or if the trap gets a strong hold, the poor creature may suffer tortures during a long period, before the owner of the trap appears to put an end to its sufferings by death. If box traps are used, they are often neglected and the poor creature imprisoned, is left to languish and starve. The teacher cannot enforce too strongly upon the child the ethics of trapping. Impress upon him that the box traps are far less cruel; but that if set, they must be examined regularly and not neglected. The study of mice affords a good opportunity for giving the children a lesson in humane trapping. Let them set a figure 4 or a bowl trap, which they must examine every morning. The little prisoners may be brought to school and studied; meanwhile, they should be treated kindly and fed bountifully. After a mouse has been studied, it should be set free, even though it be one of the quite pestiferous field mice. The moral effect of killing an animal, after a child has become thoroughly interested in it and its life, is always bad.

References—Claws and Hoofs, Johomot, American Animals, Stone & Cram; Secrets of the Woods, Long; Wild Life, Ingersoll; Familiar Wild Animals, Lottridge.
LEADING THOUGHT—The mouse is fitted by color, form, agility and habits to thrive upon the food which it steals from man, and to live in the midst of civilized people.

METHOD—A mouse cage can be easily made of wire window-screen tacked upon a wooden frame. I have even used aquarium jars with wire screen covers, and by placing one jar upon another, opening to opening, and then laying them horizontal, the mouse can be transferred to a fresh cage without trouble, and thus the mousey odor can be obviated, while the little creature is being studied. A little water in a wide-necked bottle can be lowered into this glass house by a string, and the food can be given in like manner. Stripped paper should be put into the jar for the comfort of the prisoner; a stiff string hanging down from the middle of the cage will afford the prisoner a chance to show his feats as an acrobat.

OBSERVATIONS—1. Why is the color of the mouse of special benefit to it? Do you think it protects it from the sight of its enemies? Can you see a mouse easily as it runs across the room? What is the nature of the fur of a mouse?

2. How long is a mouse’s tail as compared with its body? What is the covering of the tail? Of what use to the mouse is this long, ridged tail? Watch the mouse carefully and discover, if you can, the use of the tail in climbing.

3. Is the mouse a good jumper? Are the hind legs long and strong when compared with the front legs? How high do you think a mouse can jump? Do you think it uses its tail as an aid in jumping? How much of the legs are covered with hair? Compare the front and hind feet. What sort of claws have they? How does the mouse use its feet when climbing the string? How can it climb up the side of a wall?

4. Describe the eyes. Do you think the mouse can see very well? Does it wink? What is the shape of the ears? Do you think it can hear well? Can it move its ears forward or backward?

5. What is the shape of the snout? Of what advantage is this? Note the whiskers. What is their use? Describe the mouth. Do you know how the teeth are arranged? For what other use than to bite food does the mouse use its teeth? What other animals have their teeth arranged like those of the mouse? What food does the house mouse live upon? How does it get it?

6. How does the mouse act when it is reaching up to examine something? How does it hold its front feet? Describe how the mouse washes its face. Its back. Its feet.

7. Where does the house mouse build its nest? Of what material? How do the baby mice look? Can they see when they are first born?

8. House mice are great travelers. Can you tell how they manage to get from place to place? Write a story telling all you know of their habits.

9. How many kinds of mice do you know? Does the house mouse ever live in the field? What do you know of the habits of the white-footed mouse? Of the meadow mice? Of the jumping mice?
THE WOODCHUCK

Teacher’s Story

He who knows the ways of the woodchuck can readily guess where it is likely to be found; it loves meadows and pastures where grass or clover lushly grows. It is also fond of garden truck and has a special delectation for melons. The burrow is likely to be situated near a fence or stone heap, which gives easy access to the chosen food. The woodchuck makes its burrow by digging the earth loose with its front feet, and pushing it backward and out of the entrance with the hind feet. This method leaves the soil in a heap near the entrance, from which paths radiate into the grass in all directions. If one undertakes to dig out a woodchuck, one needs to be not only a husky individual, but something of an engineer; the direction of the burrow extends downward for a little way, and then rises at an easy angle, so that the inmate may be in no danger of flood. The nest is merely an enlargement of the burrow, lined with soft grass, which the woodchucks bring in in their mouths. During the early part of the season, the father and mother and the litter of young may inhabit the same burrow, although there are likely to be at least two separate nests. There is usually more than one back door to the woodchuck’s dwelling, through which it may escape, if pressed too closely by enemies; these back doors differ from the entrance, in that they are usually hidden and have no earth heaped near them.

The woodchuck usually feeds in the morning and again in the evening, and is likely to spend the middle of the day resting. It often goes some distance from its burrow to feed, and at short intervals, lifts itself upon its hind feet to see if the coast is clear; if assailed, it will seek to escape by running to its burrow; and when running, it has a peculiar gait well described as “pouring itself along.” If it reaches its burrow, it at once begins to dig deeply and throw the earth out behind it, thus making a wall to keep out the enemy. When cornered, the woodchuck is a courageous and fierce fighter; its sharp incisors prove a powerful weapon and it will often whip a dog much larger than itself. Every boy knows how to find whether the woodchuck is in its den or not, by rolling a stone into the burrow, and listening; if the animal is at home, the sound of its digging apprises the listener of the fact. In earlier times, the ground-hogs were much preyed upon by wolves, wildcats and foxes; now, only the fox remains and he is fast disappearing, so that at present, the farmer and his dog are about the only enemies this burrower has to contend with. It is an animal of resources and will climb a tree if attacked by a dog; it will also climb trees for fruit, like peaches. During the late summer, it is the ground-hog’s business to feed very constantly and become very fat. About the first of October, it retires to its den and sleeps until the end of March or April. During this dormant state, the beating of its heart is so faint as to be scarcely perceptible, and very little nourishment is required to keep it alive; this nourishment is supplied by the fat stored in its body, which it uses up by March, and comes out of its burrow in the spring, looking gaunt and lean. The old saying that the ground-hog comes out on
Candlemas Day, and if it sees its shadow, goes back to sleep for six weeks more, may savor of meteorological truth, but it is certainly not true of the ground-hog.

The full-grown woodchuck ordinarily measures about two feet in length. Its color is grizzly or brownish, sometimes blackish in places; the under parts are reddish and the feet black. The fur is rather coarse, thick and brown, with longer hairs which are grayish. The skin is very thick and tough and seems to fit loosely, a condition which gives the peculiar "pouring along" appearance when it is running. The hind legs and feet are longer than those in front. Both pairs of feet are fitted for digging, the front ones being used for loosening the earth and the hind pair for kicking it out of the burrow.

The woodchuck's ears are roundish and not prominent, and by muscular contraction they are closed when the animal is digging, so that no soil can enter; the sense of hearing is acute. The teeth consist of two large incisors at the front of each jaw, a bare space and four grinders on each side, above and below; the incisors are used for biting food and also for fighting. The eyes are full and bright. The tail is short and brushy, and it with the hind legs, form a tripod which supports the animal, as it sits with its forefeet lifted.

When feeding, the woodchuck often makes a contented grunting noise; when attacked and fighting, it growls; and when feeling happy and conversational, it sits up and whistles. I had a woodchuck acquaintance once which always gave a high, shrill, almost birdlike whistle when I came in view, a very jolly greeting. There are plenty of statements in books that woodchucks are fond of music, and Mr. Ingersoll states that at Wellesley College a woodchuck on the chapel lawn was wont to join the morning song exercises with a "clear soprano." The young woodchucks are born about the first of May and the litter usually numbers four or five. In June the "chucklings" may be seen following the mother in the field with much babyish grunting. If
captured at this period, they make every interesting pets. By August or September the young woodchucks leave the home burrow and start burrows of their own.

References—Wild Animals, Stone & Cram; Wild Neighbors, Ingersoll; Squirrels and Other Fur Bearers, Burroughs; Familiar Wild Animals, Lottridge.

LESSON LVI

THE WOODCHUCK OR GROUND-HOG

Leading thought—The woodchuck has thriven with civilization, notwithstanding the farmer’s dog, gun, traps and poison. It makes its nest in a burrow in the earth and lives upon vegetation; it hibernates in winter.

Method—Within convenient distance for observation by the pupils of every country schoolhouse and of most village schoolhouses, may be found a woodchuck and its dwelling. The pupils should be given the outline for observations which should be made individually through watching the woodchuck for weeks or months.

Observations—1. Where is the woodchuck found? On what does it live? At what time of day does it feed? How does it act when startled?
2. Is the woodchuck a good fighter? With what weapons does it fight? What are its enemies? How does it escape its enemies when in or out of its burrow? How does it look when running?
3. What noises does the woodchuck make and what do they mean? Play a “mouth-organ” near the woodchuck’s burrow and note if it likes music.
4. How does the woodchuck make its burrow? Where is it likely to be situated? Where is the earth placed which is taken from the burrow? How does the woodchuck bring it out? How is the burrow made so that the woodchuck is not drowned in case of heavy rains? In what direction do the underground galleries go? Where is the nest placed in relation to the galleries? Of what is the nest made? How is the bedding carried in? Of what special use is the nest?
5. Do you find paths leading to the entrances of the burrow? If so, describe them. How can you tell whether a woodchuck is at home or not if you do not see it enter? Where is the woodchuck likely to station itself when it sits up to look for intruders?
6. How many woodchucks inhabit the same burrow? Are there likely to be one or more back doors to the burrow? What for? How do the back doors differ from the front doors?
7. How long is the longest woodchuck that you have ever seen? What is the woodchuck’s color? Is its fur long or short? Coarse or fine? Thick or sparse? Is the skin thick or thin? Does it seem loose or close fitting?
8. Compare the front and hind feet and describe difference in size and shape. Are either or both slightly webbed? Explain how both front and hind feet and legs are adapted by their shape to help the woodchuck. Is the tail long or short? How does it assist the animal in sitting up?
9. What is the shape of the woodchuck’s ear? Can it hear well? Why are the ears not filled with soil when the animal is burrowing? Of what use are the long incisors? Describe the eyes.
10. How does the woodchuck prepare for winter? Where and how does it pass the winter? Did you ever know a woodchuck to come out on Candlemas Day to look for its shadow?

11. When does the woodchuck appear in the spring? Compare its general appearance in the fall and in the spring and explain the reason for the difference.

12. When are the young woodchucks born? What do you know of the way the mother woodchuck cares for her young?

As I turned round the corner of Hubbard’s Grove, saw a woodchuck, the first of the season, in the middle of the field six or seven rods from the fence which bounds the wood, and twenty rods distant. I ran along the fence and cut him off, or rather overlooked him, though he started at the same time. When I was only a rod and a half off, he stopped, and I did the same; then he ran again, and I ran up within three feet of him, when he stopped again, the fence being between us. I squatted down and surveyed him at my leisure. His eyes were dull black and rather inobvious, with a faint chestnut iris, with but little expression and that more of resignation than of anger. The general aspect was a coarse grayish brown, a sort of grisel. A lighter brown here the skin, then black or very dark brown and tipped with whitish rather loosely. The head between a squirrel and a bear, flat on the top and dark brown, and darker still or black on the tip of the nose. The whiskers black, two inches long. The ears very small and roundish, set far back and nearly buried in the fur. Black feet, with long and slender claws for digging. It appeared to tremble, or perchance shivered with cold. When I moved, it gritted its teeth quite loud, sometimes striking the under jaw against the other chatteringly, sometimes grinding one jaw on the other, yet as if more from instinct than anger. Whichever way I turned, that way it headed. I took a twig a foot long and touched its snout, at which it started forward and hit the stick, lessening the distance between us to two feet, and still it held all the ground it gained. I played with it tenderly awhile with the stick, trying to open its gritting jaws. Ever its long incisors, two above and two below, were presented. But I thought it would go to sleep if I stayed long enough. It did not sit upright as sometimes, but standing on its fore feet with its head down, i.e., half sitting, half standing. We sat looking at one another about half an hour, till we began to feel mesmeric influence. When I was tired, I moved away, wishing to see him run, but I could not start him. He would not stir as long as I was looking at him or could see him. I walked around him; he turned as fast and fronted me still. I sat down by his side within a foot. I talked to him quasi forest lingo, baby-talk, at any rate in a conciliatory tone, and thought that I had some influence on him. He gritted his teeth less. I chewed checkerberry leaves and presented them to his nose at last without a grit; though I saw that by so much gritting of the teeth he had worn them rapidly and they were covered with a fine white powder, which, if you measured it thus, would have made his anger terrible. He did not mind any noise I might make. With a little stick I lifted one of his paws to examine it, and held it up at pleasure. I turned him over to see what color he was beneath (darker or most purest brown), though he turned himself back again sooner than I could have wished. His tail was also brown, though not very dark, rat-tail like, with loose hairs standing out on all sides like a caterpillar brush. He had a rather mild look. I spoke kindly to him. I reached checkerberry leaves to his mouth. I stretched my hands over him, though he turned up his head and still gritted a little. I laid my hand on him, but immediately took it off again, instinct not being wholly overcome. If I had had a few fresh bean leaves, thus in advance of the season, I am sure I should have tamed him completely. It was a frizzly tail. His is a humble, terrestrial color like the partridge’s, well concealed where dead wiry grass rises above darker brown or chestnut dead leaves—a modest color. If I had had some food, I should have ended with stroking him at my leisure. Could easily have wrapped him in my handkerchief. He was not fat nor particularly lean. I finally had to leave him without seeing him move from the place. A large, clumsy, burrowing squirrel, Arctomys, bear-mouse. I respect him as one of the natives. He lies there, by his color and habits so naturalized amid the dry leaves, the withered grass, and the bushes. A sound nap, too, he has enjoyed in his native fields, the past winter. I think I might learn some wisdom from him. His ancestors have lived here longer than mine. He is more thoroughly acclimated and naturalized than I. Bean leaves the red man raised for him, but he can do without them.—Thoreau’s Journal.
THE RED SQUIRREL OR CHICKAREE

Teacher's Story

Just a tawny glimmer, a dash of red and gray,
Was it a flitting shadow, or a sunbeam gone astray!
It glances up a tree trunk, and a pair of bright eyes glow
Where a little spy in ambush is measuring his foe.
I hear a mocking chuckle, then wrathful, he grows bold
And stays his pressing business to scold and scold and scold.

We ought to yield admiring tribute to those animals which have been able to flourish in our midst despite man and his gun, this weapon being the most cowardly and unfair invention of the human mind. The only time that man has been a fair fighter, in combating his four-footed brethren, was when he fought them with a weapon which he wielded in his hand. There is nothing in animal comprehension which can take into account a projectile, and much less a shot from a gun; but though it does not understand, it experiences a deathly fear at the noise. It is pathetic to note the hush in a forest that follows the sound of a gun; every song, every voice, every movement is stilled and every little heart filled with nameless terror. How any man or boy can feel manly when, with this scientific instrument of death in his hands, he takes the life of a little squirrel, bird or rabbit, is beyond my comprehension. In pioneer days when it was a fight for existence, man against the wilderness, the matter was quite different; but now it seems to me that anyone who hunts what few wild creatures we have left, and which are in nowise injurious, is, whatever he may think of himself, no believer in fair play.

Within my own memory, the beautiful black squirrel was as common in our woods as was his red cousin; the shot-gun has exterminated this splendid species. Well may we rejoice that the red squirrel has, through its lesser size and greater cunning, escaped a like fate; and that pugnacious and companionable and shy, it lives in our midst and climbs our very roofs to sit there and scold us for coming within its range of vision.
It has succeeded not only in living despite of man, but because of man, for it rifles our grain bins and corn cribs and waxes opulent by levying tribute upon our stores.

Thoreau describes most graphically the movements of this squirrel. He says: "All day long the red squirrels came and went. One would approach at first warily, warily, through the shrub-oaks, running over the snow crust by fits and starts and like a leaf blown by the wind, now a few paces this way, with wonderful speed and waste of energy, making inconceivable haste with his "trotters," as if it were for a wager, and now as many paces that way, but never getting on more than half a rod at a time; and then suddenly pausing with a ludicrous expression and a gratuitous somersault, as if all the eyes of the universe were fixed on him, * * * and then suddenly, before you could say Jack Robinson he would be in the top of a young pitch pine, winding up his clock, and chiding all imaginary spectators, soliloquizing and talking to all the universe at the same time."

It is surely one of the most comical of sights to see a squirrel stop running and take observations; he lifts himself on his haunches, and with body bent forward, presses his little paws against his breast as if to say, "Be still, oh my beating heart!" which is all pure affectation because he knows he can scurry away in perfect safety. He is likely to take refuge on the far side of a tree, peeping out from this side and that, and whisking back like a flash as he catches our eye; we might never know he was there except as Riley puts it, "he lets his own tail tell on him." When climbing up or down a tree, he goes head first and spreads his legs apart to clasp as much of the trunk as possible; meanwhile his sharp little claws cling securely to the bark. He can climb out on the smallest twigs quite as well, when he needs to do so, in passing from tree to tree or when gathering acorns.

A squirrel always establishes certain roads to and from his abiding place and almost invariably follows them. Such a path may be entirely in the treetops, with air bridges from a certain branch of one tree to a certain branch of another, or it may be partially on the ground between trees. I have made notes of these paths in the vicinity of
my own home, and have noted that if a squirrel leaves them for exploring, he goes warily; while, when following them, he is quite reckless in his haste. When making a jump from tree to tree, he flattens himself as widely as possible and his tail is held somewhat curved, but on a level with the body, as if its wide brush helped to buoy him up and perhaps to steer him also.

During the winter the chickaree is quite dingy in color and is an inconspicuous object, especially when he "humps himself up" so that he resembles a knot on a limb; but with the coming of spring, he dons a brighter coat of tawny-red and along his sides, where the red meets the grayish white of the under side, there is a dark line which is very ornamental; and now his tail is a shower of ruddiness. As the season advances, the colors seem to fade; they are probably a part of his wooing costume. When dashing up a tree trunk, his color is never very striking but looks like the glimmer of sunlight; this has probably saved many of his kind from the gunner, whose eyes being at the front of his head, cannot compare in efficiency with those of the squirrel, which being large and full and alert, are placed at the sides of the head so as to see equally well in all directions.

The squirrel's legs are short because he is essentially a jumper rather than a runner; the hips are very strong which insures his power as a climber and his leaps are truly remarkable. A squirrel uses his front paws for hands in a most human way; with them he washes his face and holds his food up to his mouth while eating, and it is interesting to note the skill of his claws when used as fingers. The track he makes in the snow is quite characteristic. The tracks are paired and those of the large five-toed hind feet are always in front.

![Squirrel tracks.](image)

The squirrel has two pairs of gnawing teeth which are very long and strong, as in all rodents, and he needs to keep busy gnawing hard things with them, or they will grow so long that he cannot use them at all and will starve to death. He is very clever about opening nuts so as to get all the meats. He often opens a hickory nut with two holes which tap the places of the nut meats squarely; with walnuts or butternuts, which have much harder shells, he makes four small holes, one opposite each quarter of the kernel. He has no cheek-pouches like a chipmunk but he can carry corn and other grain. He often fills his mouth so full that his cheeks bulge out like those of a boy eating pop-corn; but anything as large as a nut he carries in his teeth. His food is far more varied than many suppose and he will eat almost anything eatable; he is a little pirate and enjoys stealing from others with keenest zest. In spring, he eats leaf buds and hunts our orchards for apple seeds. In winter, he feeds on nuts and cones; it is marvelous how he will take a cone apart, tearing off the scales and leaving them in a heap while searching for seeds; he is especially fond of the seeds of Norway spruce and hemlock. Of course, he is fond of nuts of all kinds and will cut the chestnut burs from the tree before they are ripe, so that he may get ahead of the other harvesters. He stores his food for winter in all sorts of odd places and often forgets
where he puts it. We often find his winter stores untouched the next summer. He also likes birds’ eggs and nestlings, and if it were not for the chastisement he gets from the parent robins, he would work much damage in this way.

The squirrel is likely to be a luxurious fellow and have a winter and a summer home. The former is in some hollow tree or other protected place; the summer home consists of a platform of twigs in some tree-top, often built upon an abandoned crow or hawk nest; but just how he uses these two homes, is as yet, a matter of guessing and is a good subject for young naturalists to investigate. During the winter, he does not remain at home except in coldest weather, when he lies cozily with his tail wrapped around him like a boa to keep him warm. He is too full of interest in the world to lie quietly long, but comes out, hunts up some of his stores, and finds life worth while despite the cold. One squirrel adopted a bird house in one of our trees, and he or his kin have lived there for years; in winter, he takes his share of the suet put on the trees for birds, and because of his greediness, we have been compelled to use picture wire for tying on the suet.

The young are born in a protected nest, usually in the hollow of a tree. There are four to six young in a litter and they appear in April. If necessary to move the young, the mother carries the squirrel baby clinging to her breast with its arms around her neck.

The squirrel has several ways of expressing his emotions; one is by various curves in his long beautiful, bushy tail. If the creatures of the wood had a stage, the squirrel would have to be their chief actor. Surprise, incredulousness, indignation, fear, anger and joy are all perfectly expressed by tail gestures and also by voice. As a vocalist he excels; he chatters with curiosity, “chips” with surprise, scolds by giving a guttural trill, finishing with a falsetto squeal. He is the only singer I know who can carry two parts at a time. Notice him sometimes in the top of a hickory or chestnut tree when nuts are ripe, and you will hear him singing a duet all by himself, a high shrill chatter with a chuckling accompaniment. Long may he abide with us as an uninvited guest at our cribs! For, though he be a freebooter and conscienceless, yet our world would lack its highest example of incarnate grace and activity, if he were not in it.

LESSON LVII

THE RED SQUIRREL OR CHICKAREE

Leading thought—The red squirrel by its agility and cleverness has lived on, despite its worst enemy—man. By form and color and activity it is fitted to elude the hunter.

Method—If a pet squirrel in a cage can be procured for observation at the school, the observations on the form and habits of the animal can be best studied thus; but a squirrel in a cage is an anomaly and it is far better to stimulate the pupils to observe the squirrels out of doors. Give the following questions, a few at a time, and ask the pupils to report the answers to the entire class. Much should be done with the supplementary reading, as there are many interesting squirrel stories illustrating its habits.
Observations—1. Where have you seen a squirrel? Does the squirrel trot along or leap when running on the ground? Does it run straight ahead or stop at intervals for observation? How does it look? How does it act when looking to see if the "coast is clear"?

2. When climbing a tree, does it go straight up, or move around the trunk? How does it hide itself behind a tree trunk and observe the passer-by? Describe how it manages to climb a tree? Does it go down the tree head first? Is it able to climb out on the smallest branches? Of what advantage is this to it?

3. Look closely and see if a squirrel follows the same route always when passing from one point to another. How does it pass from tree to tree? How does it act when preparing to jump? How does it hold its legs and tail when in the air during a jump from branch to branch?

4. Describe the colors of the red squirrel above and below. Is there a dark stripe along its side, if so, what color? How does the color of the squirrel protect it from its enemies? Is its color brighter in summer or in winter?

5. How are the squirrel's eyes placed? Do you think it can see behind as well as in front all the time? Are its eyes bright and alert, or soft and tender?

6. Are its legs long or short? Are its hind legs stronger and longer than the front legs? Why? Why does it not need long legs? Does its paws have claws? How does it use its paws when eating and in making its toilet?

7. Describe the squirrel's tail. Is it as long as the body? Is it used to express emotion? Of what use is it when the squirrel is jumping? Of what use is it in the winter in the nest?

8. What is the food of the squirrel during the autumn? Winter? Spring? Summer? Where does it store food for the winter? Does it steal food laid up by jays, chipmunks, mice or other squirrels? How does it carry nuts? Has it cheek-pouches like the chipmunk for carrying food? Does it stay in its nest all winter living on stored food like a chipmunk?

9. Where does the red squirrel make its winter home? Does it also have a summer home, if so, of what is it made and where built? In what sort of a nest are the young born and reared? At what time of the year are the young born? How does the mother squirrel carry her little ones if she wishes to move them?

10. How much of squirrel language can you understand? How does it express surprise, excitement, anger, or joy during the nut harvest? Note how many different sounds it makes and try to discover what they mean.

11. Describe or sketch the tracks made by the squirrel in the snow.

12. How does the squirrel get at the meats of the hickory nut and the walnut? How are its teeth arranged to gnaw holes in such hard substances as shells?

Supplementary reading—Squirrels and Other Fur Bearers, John Burroughs; American Animals, Stone & Cram; Secrets of the Woods, Long; Familiar Life in Field and Forest, Mathews; Little Beasts of Field and Wood; Cram; Wild Neighbors, Ingersoll; Familiar Wild Animals, Lottridge.
FURRY

Furry was a baby red squirrel. One day in May his mother was moving him from one tree to another. He was clinging with his little arms around her neck and his body clasped tightly against her breast, when something frightened her and in her sudden movement, she dropped her heavy baby in the grass. Thus, I inherited him and entered upon the rather onerous duties of caring for a baby of whose needs I knew little; but I knew that every well cared for baby should have a book detailing all that happens to it, therefore, I made a book for Furry, writing in it each day the things he did. If the children who have pets keep similar books, they will find them most interesting reading afterward, and they will surely enjoy the writing very much.

Extracts from Furry's Note-book

May 18, 1902—The baby squirrel is just large enough to cuddle in one hand. He cuddles all right when once he is captured; but he is a terrible fighter, and when I attempt to take him in my hand, he scrtaches and bites and growls so that I have been obliged to name him Fury. I told him, however, if he improved in temper I would change his name to Furry.

May 19—Fury greets me, when I open his box, with the most awe-inspiring little growls, which he calculates will make me turn pale with fear. He has not cut his teeth yet, so he cannot bite very severely, but that isn't his fault, for he tries hard enough. The Naturalist said cold milk would kill him, so I warmed the milk and put it in a teaspoon and placed it in front of his nose; he batted the spoon with both forepaws and tried to bite it, and thus got a taste of the milk, which he drank eagerly lapping it up like a kitten. When I hold him in one hand and cover him with the other, he turns contented little somersaults over and over.

May 20—Fury bit me only once to-day, when I took him out to feed him. He is cutting his teeth on my devoted fingers. I tried giving him grape-nuts soaked in milk, but he spat it out in disgust. Evidently he does not believe he needs a food for brain and nerve. He always washes his face as soon as he is through eating.

May 21—Fury lies curled up under his blanket all day. Evidently good little squirrels stay quietly in the nest, when the mother is not at home to give them permission to run around. When Fury sleeps, he rolls himself up in a little ball with his tail wrapped closely around him. The squirrel's tail is his "furs," which he wraps around him to keep his back warm when he sleeps in winter.

May 23—Every time I meet Uncle John he asks, "Is his name Fury or Furry now?" Uncle John is much interested in the good behavior of even little squirrels. As Fury has not bitten me hard for two days, I think I will call him Furry after this. He ate some bread soaked in milk to-day, holding it in his hands in real squirrel fashion. I let him run around the room and he liked it.

May 25—Furry got away from me this morning and I did not find him for an hour. Then I discovered him in a pasteboard box of drawing paper with the cover on. How did he squeeze through?
May 26—He holds the bowl of the spoon with both front paws while he drinks the milk. When I try to draw the spoon away, to fill it again after he has emptied it, he objects and hangs on to it with all his little might, and scolds as hard as ever he can. He is such a funny, unreasonable baby.

May 28—To-night I gave Furry a walnut meat. As soon as he smelled it he became greatly excited; he grasped the meat in his hands and ran off and hid under my elbow, growling like a kitten with its first mouse.

May 30—Since he tasted nuts he has lost interest in milk. The nut meats are too hard for his new teeth, so I mash them and soak them in water and now he eats them like a little piggy-wig with no manners at all. He loves to have me stroke his back while he is eating. He uses his thumbs and fingers in such a human way that I always call his front paws hands. When his piece of nut is very small he holds it in one hand and clasps the other hand behind the one which holds the dainty morsel, so as to keep it safe.

May 31—When he is sleepy he scolds if I disturb him and turning over on his back bats my hand with all of his soft little paws and pretends that he is going to bite.

June 4—Furry ranges around the room now to please himself. He is a little mischief; he tips over his cup of milk and has commenced gnawing off the wall paper behind the book-shelf to make him a nest. The paper is green and will probably make him sorry.

June 5—This morning Furry was hidden in a roll of paper. I put my hand over one end of the roll and then reached in with the other hand to get him; but he got me instead, because he ran up my sleeve and was much more contented to be there than I was to have him. I was glad enough when he left his hiding place and climbed to the top shelf of the bookcase, far beyond my reach.

June 6—I have not seen Furry for twenty-four hours, but he is here surely enough. Last night he tipped over the ink bottle and scattered nut shells over the floor. He prefers pecans to any other nuts.

June 7—I caught Furry to-day and he bit my finger so it bled. But afterwards, he cuddled in my hand for a long time, and then climbed my shoulder and went hunting around in my hair and wanted to stay there and make a nest. When I took him away, he pulled out his two hands full of my devoted tresses. I'll not employ him as a hairdresser.

June 9—Furry sleeps nights in the top drawer of my desk; he crawls in from behind. When I pull out the drawer he pops out and scares me nearly out of my wits; but he keeps his wits about him and gets away before I can catch him.

June 20—I keep the window open so Furry can run out and in and learn to take care of himself out-of-doors.

Furry soon learned to take care of himself, though he often returned for nuts, which I kept for him in a bowl. He does not come very near me out-of-doors, but he often speaks to me in a friendly manner from a certain pitch pine tree near the house.

There are many blank leaves in Furry's note-book. I wish that he could have written on these of the things that he thought about me and my performances. It would certainly have been the most interesting book concerning squirrels in the world.
THE CHIPMUNK

Teacher's Story

While the chipmunk is a good runner and jumper, it is not so able a climber as is the red squirrel, and it naturally stays nearer the ground. One windy day I was struck by the peculiar attitude of what, I first thought, was a red squirrel gathering green acorns from a chestnut oak in front of my window. A second glance showed me that it was a chipmunk lying close to the branch, hanging on for "dear life" and with an attitude of extreme caution, quite foreign to the red squirrel in a similar situation. He would creep out, seize an acorn in its teeth, creep back to a larger limb, take off the shell, and with his little paws stuff the kernel into his cheek pouches; he took hold of one side of his mouth with one hand to stretch it out, as if opening a bag, and stuffed the acorn in with the other. I do not know whether this process was necessary or not at the beginning, for his cheeks were distended when I first saw him; and he kept on stuffing them until he looked as if he had a hopeless case of mumps. Then with obvious care he descended the tree and retreated to his den in the side hill, the door of which I had already discovered, although it was well hidden by a bunch of orchard grass.

Chipmunks are more easily tamed than red squirrels and soon learn that pockets may contain nuts and other things good to eat. The first tame chipmunk of my acquaintance belonged to a species found in the California mountains. He was a beautiful little creature and loved to play about his mistress' room; she being a naturalist as well as a poet, was able to understand her little companion, and the relations between them were full of mutual confidence. He was fond of English walnuts and would always hide away all that were placed in a dish on the table. One day his mistress, when taking off her bonnet after returning from church, discovered several of these nuts tucked safely in the velvet bows; they were invisible from the front but perfectly visible from the side. Even yet, she wonders what the people at church that day thought of her original ideas in millinery; and she wonders still more how "Chipsie" managed to get into the bonnet-box, the cover of which was always carefully closed.

The chipmunk is a good home builder and carries off, presumably in its cheek pouches, all of the soil which it removes in making its burrow. The burrow is made usually in a dry hillside, the

"Chipsie", a chipmunk of the Sierras.
passageway just large enough for its own body, widening to a nest which is well bedded down. There is usually a back door also, so that in case of necessity, the inmate can escape. It retires to this nest in late November and does not appear again until March. In the nest, it stores nuts and other grains so that when it awakens, at long intervals, it can take refreshment.

If you really wish to know whether you see what you look at or not, test yourself by trying to describe the length, position and number of the chipmunk’s stripes. These stripes, like those of the tiger in the jungle, make the creature less conspicuous; when on the ground, where its stripes fall in with the general shape and color of the grass and underbrush, it is quite invisible until it stirs. Its tail is not so long nor nearly so bushy as that of the squirrel; it does not need a tail to balance and steer with in the tree tops; and since it lives in the ground, a bushy tail would soon be loaded with earth and would be an incubus instead of a thing of beauty.

The chipmunk is not a vocalist like the red squirrel, but he can cluck like a cuckoo and chatter gayly or cogently; and he can make himself into a little bunch with his tail curved up his back, while he eats a nut from both his hands, and is even more amusing than the red squirrel in this attitude; probably because he is more innocent and not so much of a poseur. His food consists of all kinds of nuts, grain and fruit, but he does little or no damage, as a rule. He is pretty and distinctly companionable, and I can rejoice, in that I have had him and his whole family as my near neighbors for many years. I always feel especially proud when he shows his confidence, by scampering around our piazza floor and peeping in at our windows, as if taking a reciprocal interest in us.

LESSON LVIII

THE CHIPMUNK

Leading thought—The chipmunk lives more on the ground than does the squirrel; its colors are protective and it has cheek pouches in which it carries food, and also soil when digging its burrow. It stores food for winter in its den.

Method—The field note-book should be the basis for this work. Give the pupils an outline of observations to be made, and ask for reports now and then. Meanwhile stimulate interest in the little creatures by reading aloud from some of the references given.

Observations—1. Do you see the chipmunk climbing around in trees like the red squirrel? How high in a tree have you ever seen a chipmunk?

2. What are the chipmunk’s colors above and below? How many stripes has it? Where are they and what are their colors? Do you think that these stripes conceal the animal when among grasses and bushes?

3. Compare the tails of the chipmunk and the red squirrel. Which is the longer and bushier? Tell if you can the special advantage to the chipmunk in having this less bushy tail?

4. What does the chipmunk eat? How does it carry its food? How does it differ in this respect from the red squirrel? Does it store its food for winter use? How does it prepare its nuts? How does it hold its food while eating?
5. Where does the chipmunk make its home? How does it carry away soil from its burrow? How many entrances are there? How is the den arranged inside? Does it live in the same den the year round? When does it retire to its den in the fall? When does it come out in the spring?

6. Does the chipmunk do any damage to crops? What seeds does it distribute? At what time do the little chipmunks appear in the spring?

7. Observe carefully the different tones of the chipmunk and compare its chattering with that of the squirrel.

Supplementary reading—Squirrels and Other Fur-Bearers, John Burroughs; American Animals, Stone and Cram.

Photo by Verne Morton

The Eastern Chipmunk.

TO A CAPTIVE CHIPMUNK OF THE SIERRAS

Bright little comrade from the woods, come show
Thy antic cheer about my sunlit room
Of books, that stand in moods of gloom
Because thought's tide is out, heart's rhythm is low
With weariness. Friendly thou art and know
Good friend in me, who yet did dare presume
To take thee from thy home, thy little doom
To make for thee, and longer life bestow.
So, thou hast not been eaten by the snake;
Thy gentle blood no weasel drank at night;
Thou hast not starved 'mid winter's frozen wood,
Nor waited vainly for the sun to make
Sweet the wild nuts for thee. Yet, little sprite,
Thou still doth question if my deed were good?

—Irene Hardy.
THE LITTLE BROWN BAT
Teacher’s Story

His small umbrella, quaintly halved,
Describing in the air an arc alike inscrutable,—
Elate philosopher!—Emily Dickinson.

HOOVER first said “as blind as a bat,” surely never looked a bat in the face, or he would not have said it. The deep-set, keen, observant eyes are quite in keeping with the alert attitude of the erect, pointed ears; while the pug-nose and the wide open, little, pink bag of a mouth, set with tiny, sharp teeth, give this anomalous little animal a deliciously impish look. Yet how have those old artists belied the bat, who fashioned their demons after his pattern, ears, eyes, nose, mouth, wings and all! Certain it is, if human beings ever get to be winged angels in this world, they are far more likely to have their wings fashioned like those of the bat than like those of the bird. As a matter of fact, there are no other wings so wonderful as the bat’s; the thin membrane is equipped with sensitive nerves which inform the flier of the objects in his path, so that he darts among the branches of trees at terrific speed and never touches a twig; a blinded bat was once set free in a room, across which threads were stretched, and he flew about without ever touching one. After we have tamed one of these little, silky flitter-mice we soon get reconciled to his wings for he proves the cunningest of pets; he soon learns who feeds him, and is a constant source of entertainment.

The flight of the bat is the highest ideal we may have, for the achievement of the aeroplane. It consists of darting hither and thither with incredible swiftness, and making sharp turns with no apparent effort. Swifts and swallows are the only birds that can compete with the bat in wing celerity and agility; it is interesting to note that these birds also catch insects on the wing, for food. The bat, like the swift, keeps his mouth open, scooping in all the insects in his way; more than this, he makes a collecting net of the wing membrane, stretched between the hind legs and tail, doubling it up like an apron on the unfortunate insects, and then reaching down and gobbling them up; and thus he is always doing good service to us on summer evenings by swallowing mosquitoes and gnats.

The short fur of the bat is as soft as silk, and covers the body but not the wings; the plan of the wing is something like that of the duck’s foot; it consists of a web stretched between very much elongated fingers. If a boy’s fingers were as long in proportion, as a bat’s, they would measure four feet. Stretched between the long fingers is a thin, rubbery membrane, which extends back to the ankles and thence back to the tip of the bony tail; thus, the bat has a winged margin all around his body. Since fingers make the framework, it is the thumb that projects from the front angle of the wing, in the form of a very serviceable hook, resembling that used by a one-armed man to replace the lost member. These hooks the bat uses in many ways. He drags himself along the floor with their aid, or he scratches the back of his head with them, if occasion requires. He is essentially a creature of the air and is not at all fitted for walking; his
knees bend backward in an opposite direction from ours. This renders him unable to walk, and when attempting to do so, he has the appearance of "scrabbling" along on his feet and elbows. When thus moving he keeps his wings fluttering rapidly, as if feeling his way in the dark, and his movements are as trembly as those of a palsied old man.

The little brown bat's wings often measure nine inches from tip to tip, and yet he folds them so that they scarcely show; he does not fold them like a fan, but rather like a pocket knife. The hind legs merely act as a support for the side wing, and the little hip bones look pitifully sharp, the membrane reaches only to the ankle, the tiny emaciated foot projecting from it is armed with five, wirelike toes, tipped with sharp hooked claws. It is by these claws that he hangs when resting during the day, for he is upside-down-y in his sleeping habits, slumbering during the daytime, while hanging head downward, without any inconvenience from a rush of blood to the brain; when thus suspended, the tail is folded down. Sometimes he hangs by one hind foot and a front hook; and he is a wee thing when all folded together and hung up, with his nose tucked between his hooked thumbs, in a very babyish fashion.

The bat is very particular about his personal cleanliness. People who regard the bat as a dirty creature, had better look to it that they are even half as fastidious as he. He washes his face with the front part of his wing, and then licks his wash-cloth clean, he scrubs the back of his head with his hind foot and then licks the foot; when hanging head down, he will reach one hind foot down and scratch behind his ear with an aplomb truly comical in such a mite; but it is most fun of all to see him clean his wings; he seizes the edges in his mouth and stretches and licks the membrane until we are sure it is made of silk elastic, for he pulls and hauls it in a way truly amazing.

The bat has a voice which sounds like the squeak of a toy wheelbarrow, and yet it is expressive of emotions. He squeaks in one tone when holding conversation with other bats, and squeaks quite differently when seized by the enemy.

The mother bat feeds her little ones from her breasts as a mouse does its young, only she cradles them in her soft wings while so doing; often she takes them with her when she goes out for insects in the evenings; they cling to her neck during these exciting rides; but when she wishes to work unencumbered, she hangs her tiny youngsters on some twig and goes back to them later. The little ones are born in July and usually occur as twins. During the winter, bats hibernate like woodchucks or chipmunks. They select for winter quarters some hollow tree or cave or other protected place. They go to sleep when the cold weather comes, and do not awake until the insects are flying; they then come forth in the evenings, or perhaps early in the morning, and do their best to rid the world of mosquitoes and other insect nuisances.

There are many senseless fears about the bat; for instance, that he likes to get tangled in a lady's tresses, a situation which would frighten him far more than the lady; or that he brings bedbugs into the house, when he enters on his quest for mosquitoes, which is an ungrateful slander. Some people believe that all bats are vampires, and only await an opportunity to suck blood from their victims. It is true that in South America there are two species which occasionally attack people who are careless enough to sleep with their toes uncovered, but feet thus injured seem to
Mammal Study

recover speedily; and these bats do little damage to people, although they sometimes pester animals; but there are no vampires in the United States. Our bats, on the contrary, are innocent and beneficial to man; and if we had more of them we should have less malaria. There a few species in our country, which have little, leaf-like growths on the end of the nose; and when scientists study the bat from a nature-study instead of an anatomical standpoint, we shall know what these leafy appendages are used for.

The little brown bat.

LESSON LIX

The Bat

Leading thought—Although the bat's wings are very different from those of the bird's yet it is a rapid and agile flier. It flies in the dusk and catches great numbers of mosquitoes and other troublesome insects, upon which it feeds.

Method—This lesson should not be given unless there is a live bat to illustrate it; the little creature can be cared for comfortably in a cage in the schoolroom, as it will soon learn to take flies or bits of raw meat when presented on the point of a pencil or toothpick. Any bat will do for this study, although the little brown bat is the one on which my observations were made.

Observations—1. At what time of day do we see bats flying? Describe how the bat's flight differs from that of birds. Why do bats dart about so rapidly?

2. Look at a captive bat and describe its wings. Can you see what makes the framework of the wings? Do you see the three finger bones extending out into the wings? How do the hind legs support the wing? The tail? Is the wing membrane covered with fur? Is it thick and leathery or thin and silky and elastic? How does the bat fold up its wings?

3. In what position does the bat rest? Does it ever hang by his thumb hooks?

4. Can you see whether the knees of the hind legs bend upward or downward? How does the bat act when trying to walk or crawl? How does it use its thumb hooks in doing this?

5. What does the bat do daytimes? Where does it stay during the day? Do many bats congregate together in their roosts?
6. Describe the bat's head, including the ears, eyes, nose and mouth. What is its general expression? Do you think it can see and hear well? How is its mouth fitted for catching insects? Does it shut its mouth while chewing or keep it open? Do you think that bats can see by daylight?

7. What noises does a bat make? How does it act if you try to touch it? Can it bite severely? Can you understand why the Germans call it a flitter-mouse?

8. Do you know how the mother bat cares for her young? How does she carry them? At what time of year may we expect to find them?

9. When making its toilet, how does a bat clean its wings? Its face? Its back? Its feet? Do you know if it is very clean in his habits?

10. How and where do the bats pass the winter? How are they beneficial to us? Are they ever harmful?

Supplementary reading—American Animals, Stone and Cram.

Nature-study should not be unrelated to the child's life and circumstances. It stands for directness and naturalness. It is astonishing when one comes to think of it, how indirect and how remote from the lives of pupils much of our education has been. Geography still often begins with the universe, and finally, perhaps, comes down to some concrete and familiar object or scene that the pupil can understand. Arithmetic has to do with brokerage and partnerships and partial payments and other things that mean nothing to the child. Botany begins with cells and protoplasm and cryptogams. History deals with political and military affairs, and only rarely comes down to physical facts and to those events that express the real lives of the people; and yet political and social affairs are only the results of expressions of the way in which people live. Readers begin with mere literature or with stories of scenes the child will never see. Of course these statements are meant to be only general, as illustrating what is even yet a great fault in educational methods. There are many exceptions, and these are becoming commoner. Surely, the best education is that which begins with the materials at hand. A child knows a stone before it knows the earth.

HOSE who have had experience with this animal, surely are glad that it is small; and the wonder always is, that so little a creature can make such a large impres-
sion upon the atmosphere. A fully grown skunk is
about two feet long; its body is covered with long, shining, rather coarse hair, and the tail which is carried
like a flag in the air, is very large and bushy. In color, the fur is sometimes entirely black, but most often has a white patch on
the back of the neck, with two stripes extending down the back and along the sides to the tail; the face, also, has a white stripe.

The skunk has a long head and a rather pointed snout; its front legs are very much shorter than its hind legs, which gives it a very peculiar gait. Its forefeet are armed with long, strong claws, with which it digs its burrow, which is usually made in light soil. It also often makes its home in some crevice in rocks, or even takes possession of an abandoned woodchuck’s hole; or trusting to its immunity from danger, makes its home under the barn. In the fall, it becomes very fat, and during the early part of winter, hibernates within its den; it comes out during the thaws of winter and early spring.

The young skunks appear in May; they are born in an enlarged portion of the burrow, where a nice bed of grass and leaves is made for them; the skunk is scrupulously neat about its own nest. The young skunks are very active, and interesting to watch, when playing together like kittens.

The skunk belongs to the same family as the mink and weasel, which also give off a disagreeable odor when angry. The fetid material which is the skunk’s defence, is contained in two capsules under the root of the tail. These little capsules are not larger than peas, and the quantity of liquid forced from them in a discharge is scarcely more than a large drop; yet it will permeate the atmosphere with its odor for a distance of a mile. The fact that this discharge is so disagreeable to all other animals, has had a retarding influence upon the skunk’s intelligence. It has not been obliged to rely upon its cunning to escape its enemies, and has therefore never developed either fear or cleverness. It marches abroad without haste, confident that every creature which sees it will give it plenty of room. It is a night prowler, although it is not averse to a daytime prome-
nade. The white upon its fur gives warning at night, that here is an animal which had best be left alone. This immu-
nity from attack makes the skunk careless in learning

Photo by Verne Morton

The skunk.
wisdom from experience; it never learns to avoid a trap or a railway or trolley track.

The skunk's food consists largely of insects, mice, snakes and other small animals. It also destroys the eggs and young of birds which nest upon the ground. It uses its strong forepaws in securing its prey. Dr. Merriam, who made pets of young skunks after removing their scent capsules, found them very interesting. He says of one which was named "Meph": "We used to walk through the woods to a large meadow that abounded in grasshoppers. Here, Meph would fairly revel in his favorite food, and it was rich sport to watch his manoeuvres. When a grasshopper jumped, he jumped, and I have seen him with as many as three in his mouth and two under his fore-paws at the same time."

The only injury which the skunk is likely to do to the farmers, is the raiding of the hens' nests, and this can be obviated by properly housing the poultry. On the other hand, the skunk is of great use in destroying injurious insects and mice. Often when skunks burrow beneath barns, they completely rid the place of mice. Skunk fur is very valuable and is sold under the name of Alaskan sable. The skunk takes short steps, and goes so slowly that it makes a double track, the imprints being very close together. The foot makes a longer track than that of the cat, as the skunk is plantigrade; that is, it walks upon its palms and heels as well as its toes.

References—Wild Neighbors, Ingersoll; Familiar Life in Field and Forest, Mathews; American Animals, Stone and Cram; Squirrels and Other Fur Bearers, Burroughs.

LESSON LX

THE SKUNK

Leading thought—The skunk has depended so long upon protecting itself from its enemies by its disagreeable odor, that it has become stupid in this respect, and seems never to be able to learn to keep off of railroad tracks. It is a very beneficial animal to the farmer because its food consists so largely of injurious insects and rodents.

Method—The questions should be given the pupils and they should answer them from personal observations or inquiries.

Observations—1. How large is a skunk? Describe its fur. Where does the black and white occur in the fur? Of what use is the white to the skunk? Is the fur valuable? What is its commercial name?

2. What is the shape of the skunk's head? The general shape of the body? The tail? Are the front legs longer or shorter than the hind legs? Describe the front feet. For what are they used?

3. Where and how does the skunk make its nest? Does it sleep like a woodchuck during the winter? What is its food? How does it catch its prey? Does it hunt for its food during the day or the night? Does
the skunk ever hurry? Is it afraid? How does it protect itself from its enemies? Do you think that the skunk’s freedom from fear has rendered the animal less intelligent?

4. At what time do the skunk kittens appear? Have you ever seen little skunks playing? If so, describe their antics. How is the nest made soft for the young ones?

5. How does the skunk benefit farmers? Does it ever do them any injury? Do you think that it does more good than harm?

6. Describe the skunk’s track as follows: How many toes show in the track? Does the palm or heel show? Are the tracks near together? Do they form a single or a double line?

Supplementary reading—Squirrels and Other Fur Bearers, Burroughs.

Saw a little skunk coming up the river bank in the woods at the white oak, a funny little jetaow, about six inches long and nearly as broad. It jaded me and actually compelled me to retreat before it for five minutes. Perhaps I was between it and its hole. Its broad black tail, tipped with white, was erect like a kitten’s. It had what looked like a broad white band drawn tight across its forchand or top-head, from which two lines of white ran down, one on each side of its back, and there was a narrow white line down its snout. It raised its back, sometimes ran a few feet forward, sometimes backward, and repeatedly turned its tail to me, prepared to discharge its fluid, like the old ones. Such was its instinct, and all the while it kept up a fine grunting like a little pig or a red squirrel.—Henry Thoreau.

Few animals are so silent as the skunk. Zoological works contain no information as to its voice, and the essayists rarely mention it except by implication. Mr. Burroughs says: “The most silent creature known to me, he makes no sound, so far as I have observed, save a diffuse, impatient noise, like that produced by beating your hand with a whisk-broom, when the farm-dog has discovered his retreat in the stone fence.” Rowland Robinson tells us that: “The voiceless creature sometimes frightens the belated farm-boy, whom he curiously follows with a mysterious hollow beating of his feet upon the ground.” Thoreau, as has been mentioned, heard one keep up a “fine grunting, like a little pig or a squirrel,” but he seems to have misunderstood altogether a singular loud patting sound heard repeatedly on the frozen ground under the wall, which he also listened to, for he thought it “had to do with getting its food, patting the earth to get the insects or worms.” Probably he would have omitted this guess if he could have edited his diary instead of leaving that to be done after his death. The patting is evidently merely a nervous sign of impatience or apprehension, similar to the well-known stamping with the hind feet indulged in by rabbits, in this case probably a menace like a doubling of the fists, as the hind legs, with which they kick, are their only weapons. The skunk, then, is not voiceless, but its voice is weak and querulous, and it is rarely if ever heard except in the expression of anger.

—Ernest Ingersol in “Wild Neighbors.”
The raccoon.
Photo by George Fiske, Jr.

THE RACCOON

Teacher's Story

ONE other of our little brothers of the forest, has such a mischievous countenance as the coon. The black patch across the face and surrounding the eyes, like large goggles, and the black line extending from the long, inquisitive nose directly up the forehead give the coon's face an anxious expression; and the keenness of the big, beady, black eyes and the alert, "sassy" looking, broadly triangular ears, convince one that the anxiety depicted in the face is anxiety lest something that should not be done be left undone; and

I am sure that anyone who has had experience with pet coons will aver that their acts do not belie their looks.

What country child, wandering by the brook and watching its turbulence in early spring, has not viewed with awe, a footprint on the muddy banks looking as if it were made by the foot of a very little baby. The first one I ever saw, I promptly concluded was made by the
foot of a brook fairy. However, the coon is no fairy; it is a rather heavy, logy animal and, like the bear and skunk, is plantigrade, walking on the entire foot instead of on the toes, like a cat or dog. The hind foot is long, with a well-marked heel, and five comparatively short toes, giving it a remarkable resemblance to a human foot. The front foot is smaller and looks like a wide, little hand, with four long fingers and a rather short thumb. The claws are strong and sharp. The soles of the feet and the palms of the hands look as if they were covered with black kid, while the feet above and the backs of the hands are covered with short fur. Coon tracks are likely to be found during the first thawing days of winter, along some stream or the borders of swamps, often following the path made by cattle. The full-length track is about 2 inches long; as the coon puts the hind foot in the track made by the front foot on the same side, only the print of the hind feet is left, showing plainly five toe prints and the heel. The tracks may vary from one-half inch to one foot or more apart, depending on how fast the animal is going; when it runs it goes on its toes, but when walking sets the heel down; the tracks are not in so straight a line as those made by the cat. Sometimes it goes at a slow jump, when the prints of the hind feet are paired, and between and behind them are the prints of the two front feet.

The coon is covered with long, rather coarse hair, so long as to almost drag when the animal is walking; it really has two different kinds of hair, the long, coarse, gray hair, blackened at the tips, covering the fine, short, grayish or brownish under coat. The very handsome bushy tail is ringed with black and gray.

The raccoon feeds on almost anything eatable, except herbage. It has a special predilection for corn in the milk stage and, in attaining this sweet and toothsome luxury, it strips down the husks and often breaks the plant, doing much damage. It is also fond of poultry and often raids hen houses; it also destroys birds' nests and the young, thus damaging the farmer by killing both domestic and wild birds. It is especially fond of fish and is an adept at sitting on the shore and catching them with its hands; it likes turtle eggs, crayfish and snakes; it haunts the bayous of the Gulf Coast for the oysters which grow there; it is also a skillful frog catcher. Although fond of animal diet, it is also fond of fruit, especially of berries and wild grapes.

It usually chooses for a nest a hollow tree or a cavern in a ledge near a stream, because of its liking for water creatures; and also because of its strange habit of washing its meat before eating it. I have watched a pet coon performing this act; he would take a piece of meat in his hands, dump it into the pan of drinking water and sose it up and down a few times; then he would get into the pan with his splay feet and roll the meat beneath and between them, meanwhile looking quite unconcernedly at his surroundings, as if washing the meat were an act too mechanical to occupy his mind. After the meat had become soaked until white and flabby, he would take it in his hands and hang on to it with a tight grip while he pulled off pieces with his teeth; or sometimes he would hold it with his feet, and use hands as well as teeth in tearing it apart. The coon's teeth are very much like those of the cat, having long, sharp tushes or canines, and sharp, wedge-shaped grinding teeth, which cut as well as grind. After eating, the pet coon always washed his feet by splashing them in the pan.
It is a funny sight to watch a coon arrange itself for a nap, on a branch or in the fork of a tree, it adapts its fat body to the unevenness of the bed with apparent comfort; it then tucks its nose down between its paws and curls its tail about itself, making a huge, furry ball. In all probability, the rings of gray and black on the tail, serve as protective color to the animal sleeping in a tree during the daytime, when sunshine and shadow glance down between the leaves with ever-changing light. The coon spends much of its days asleep in some such situation, and comes forth at night to seek its food.

In the fall, the coon lays on fat enough to last it during its winter sleep. Usually several inhabit the same nest in winter, lying curled up together in a hollow tree, and remaining dormant all winter except when awakened by the warmth of a thaw. They then may come forth to see what is happening, but return shortly to wait until March or April; then they issue to hunt for the scant food, and are so lean and weak that they fall easy prey to their enemies.

The young are born in April and May; there are from three to six in a litter; they are blind and helpless at first, and are cared for carefully by their parents, the family remaining together for a year, until the young are fully grown. If removed from their parents the young ones cry pitifully, almost like babies. The cry or whistle of the fully grown coon is anything but a happy sound, and is quite impossible to describe. I have been awakened by it many a night in camp, and it always sounded strange, taking on each time new quavers and whimperings. As a cry, it is first cousin to that of the screech-owl.

The stories of pet coons are many. I knew one which, chained in a yard, would lie curled up near its post looking like an innocent stone except for one eye kept watchfully open. Soon a hen, filled with curiosity would come warily near, looking longingly at remains of food in the pan; the coon made no move until the disarmed biddy came close to the pan. Then, there was a scramble and a squawk and with astonishing celerity he would wring her neck and strip off her feathers. Another pet coon was allowed to range over the house at will, and finally had to be sent away because he had learned to open every door in the house, including cupboard doors, and could also open boxes and drawers left unlocked; and I have always believed he could have learned to unlock drawers if he had been given the key. All coons are very curious, and one way of trapping them is to suspend above the trap a bit of bright tin; in solving this glittering mystery, traps are forgotten.

LESSON LXI

The Raccoon

Leading thought—The raccoon lives in hollow trees or caves along the banks of streams. It sleeps during the day and seeks its food at night. It sleeps during the winter.

Method—If there are raccoons in the vicinity, ask the older boys to look for their tracks near the streams and to describe them very carefully to the class. The ideal method of studying the animal, is to have a pet coon where the children may watch at leisure its entertaining and funny performances. If this is impossible, then follow the
less desirable method of having the pupils read about the habits of the coon and thus arouse their interest and open their eyes, so that they may make observations of their own when opportunity offers. I would suggest the following topics for oral or written work in English:

Observations—1. Where have you found raccoon tracks? How do they differ from those of fox or dog? How far are the footprints apart? Can you see the heel and toe prints? Do you see the tracks of all four feet? Are the tracks in a straight line like those of the cat? What is the size of the track, the length, the breadth?

2. What do coons eat and how do they get their food? Which of our crops are they likely to damage? What other damage do they do? Have you ever heard coons cry or whistle during August nights in the cornfields?
3. Why do raccoons like to live near the water? What do they find of interest there? How do they prepare their meat before eating it? How does a coon handle its meat while eating it?

4. What kind of fur has the coon? Why does it need such a heavy covering? Describe the color of the fur. Describe the tail. Of what use is such a large and bushy tail to this animal?

5. Describe the coon's face. How is it marked? What is its expression? Describe the eyes and ears. The nose. Has it teeth resembling those of the cat and dog?

6. Describe the coon's feet. How many toes on the front feet? How many on the hind feet? How does this differ from the cat and dog? How do the front and hind feet differ in appearance? Can both be used as hands?

7. How do coons arrange themselves for a nap in a tree? How do they cover the head? How is the tail used? Do you think this bushy tail used in this way would help to keep the animal warm in winter? Do coons sleep most daytimes or nights?

8. At what time of year are coons fattest? Leanest? Why? Do they ever come out of their nests in winter? Do they live together or singly in winter?

9. At what time of year are the young coons born? Do you know how they look when they are young? How are they cared for by their parents?

10. Are the coon's movements slow or fast? What large animal is a near relative of the coon?

Supplementary reading—American Animals, Stone and Cram; Wild Neighbors, Ingersoll; Familiar Life of Field and Forest, Mathews; Little People of the Sycamore, Roberts; Life of Animals, Ingersoll; "Mux" in Roof and Meadow, Sharp; Little Brother of the Bear, Long.
THE WOLF

The study of the wolf should precede the lessons on the fox and the dog. After becoming familiar with the habits of wolves, the pupils will be much better able to understand the nature of the dog and its life as a wild animal. In most localities, the study of the wolf must, of course, be a matter of reading, unless the pupils have an opportunity to study the animal in traveling manergeries or in zoological gardens. However, in all the government preserves, the timber wolf has multiplied to such an extent, that it may become a factor in the lives of many people in the United States. This wolf ranged in packs over New York State a hundred years ago, but was finally practically exterminated in most of the eastern forests, except in remote and mountainous localities. A glance at Bulletin 72 by Vernon Bailey, published by the U. S. Department of Agriculture, Forest Service, is a revelation of the success of the timber wolf, in coming back to his own, as soon as the forest preserves furnished plenty of game, and forbade hunters. Timber wolves are returning of late years to Western Maine and Northern New Hampshire; Northern Michigan and Wisconsin have them in greater numbers; some have also been killed in the Apalachian Mountains of Tennessee, Virginia and West Virginia, but their stronghold is in the great Rocky Mountains Region and the Northwestern Sierras, from which they have never been driven.

It might be well to begin this lesson on the wolf with a talk about the gray wolves which our ancestors had to contend with, and also with stories of the coyote or prairie wolf which has learned to adapt itself to civilization and flourishes in the regions west of the Rocky Mountains, despite men and dogs. Literature is rich in wolf stories. Although Kipling's famous Mowgli Stories belong to the realm of fiction, yet they contain interesting accounts of the habits of the wolves of India, and are based upon the hunter's and track-
er's knowledge of these animals. We have many thrillingly interesting stories in our own literature which deal with our native wolves. The following are among the best:

"Lobo" in Wild Animals I Have Known; "Tito" in Lives of the Hunted; "Bad Lands Billy and the Winnipeg Wolf" in Animal Heroes all by Thompson Seton; "The Passing of Black Whelps" in Watchers of the Trail by Roberts; Northern Trails by Long; "Pico, Coyote" by Coolidge in True Tales of Birds and Beasts.

For more serious accounts of the wolves see American Animals, p. 277; The "Hound of the Plains," in Wild Neighbors, and page 188 in the Life of Animals, both by Ingersoll. "The Coyote" by Bret Harte and "The Law of the Pack" in the Second Jungle Book bring the wolf into poetry.

From some or all of these stories, the pupils should get information about the habits of the wolves. This information should be incorporated in an essay or an oral exercise and should cover the following points: Where do the wolves live? On what do they feed? How do they get their prey? Do they hunt alone or in packs? How do they call to each other? Description of the den where the young are reared. The wolf's cleverness in eluding hunters and traps.

"Katrina Wolfchen", the pet coyote of Professor Fred S. Charles.
THE FOX

Teacher's Story

O we not always, on a clear morning of winter, feel a thrill that must have something primitive in its quality, at seeing certain tracks in the snow that somehow suggest wildness and freedom! Such is the track of the fox. Although it is somewhat like that of a small dog yet it is very different. The fox has longer legs than most dogs of his weight, and there is more of freedom in his track and more of strength and agility expressed in it. His gait is usually an easy lope; this places the imprint of three feet in a line, one ahead of another, but the fourth is off a little at one side, as if to keep the balance.

The fox lives in a den or burrow. The only fox home which I ever saw, was a rather deep cave beneath the roots of a stump, and there was no burrow or retreat beyond it. However, foxes often select woodchuck burrows, or make burrows of their own, and if they are caught within, they can dig rapidly, as many a hunter can attest. The mother usually selects an open place for a den for the young foxes; often an open field or side-hill is chosen for this. The den is carpeted with grass and is a very comfortable place for the fox puppies. The den of the father fox is usually not far away.

The face of the red fox shows plainly why he has been able to cope with man, and thrive despite and because of him. If ever a face showed cunning, it is his. Its pointed, slender nose gives it an expression of extreme cleverness, while the width of the head between the upstanding, triangular ears gives room for a brain of power. In color the fox is russet-red, the hind quarters being grayish. The legs are black outside and white inside; the throat is white, and the broad, triangular ears are tipped with black. The glory of the fox is his "brush," as the beautiful, bushy tail is called. This is red, with black toward the end and white-tipped. This tail is not merely for beauty, for it affords the fox warmth during the winter, as any one may see who has observed the way it is wrapped
around the sleeping animal. But this bushy tail is a disadvantage, if it becomes bedraggled and heavy with snow and sleet, when the hounds are giving close chase to its owner. The silver fox and the black fox are the same species as the red fox.

The fox is an inveterate hunter of the animals of the field; meadow mice, rabbits, woodchucks, frogs, snakes and grasshoppers, are all acceptable food; he is also destructive of birds. His fondness for the latter has given him a bad reputation with the farmer because of his attacks on poultry. Not only will he raid hen-roosts if he can force entrance, but he catches many fowls in the summer when they are wandering through the fields. The way he carries the heavy burden of his larger prey shows his cleverness: He slings a hen or a goose over his shoulders, keeping the head in his mouth to steady the burden. Mr. Cram says, in American Animals:

"Yet, although the farmer and the fox are such inveterate enemies, they manage to benefit each other in a great many ways quite unintentionally. The fox destroys numberless field mice and woodchucks for the farmer and in return the farmer supplies him with poultry, and builds convenient bridges over streams and wet places, which the fox crosses oftener than the farmer, for he is as sensitive as a cat about getting his feet wet. On the whole, I am inclined to believe that the fox gets the best part of the exchange, for, while the farmer shoots at him on every occasion, and hunts him with dogs in the winter, he has cleared the land of wolves and panthers, so that foxes are probably safer than before any land was ploughed."

The bark of the fox is a high, sharp yelp, more like the bark of the coyote than of the dog. There is no doubt a considerable range of meaning in the fox's language, of which we are ignorant. He growls when angry, and when pleased he smiles like a dog and wags his beautiful tail.

Many are the wiles of the fox to head off dogs following his track: he often retraces his own steps for a few yards and then makes a long sideways jump; the dogs go on, up to the end of the trail pocket, and try in vain to get the scent from that point. Sometimes he walks along the top rails of fences or takes the high and dry ridges where the scent will not remain; he often follows roads and beaten paths and also goes around and around in the midst of a herd of cattle, so that his scent is hidden; he crosses
streams on logs and invents various other devices too numerous and intricate to describe. When chased by dogs, he naturally runs in a circle, probably so as not to be too far from home. If there are young ones in the den, the father fox leads the hounds far away, in the next county, if possible. Perhaps one of the most clever tricks of the fox, is to make friends with the dogs. I have known of two instances where a dog and fox were daily companions and playfellows.

The young foxes are born in the spring. They are black at first and are fascinating little creatures, being exceedingly playful and active. Their parents are very devoted to them, and during all their puppyhood, the mother fox is a menace to the poultry of the region, because the necessity is upon her of feeding her rapidly growing litter.

In my opinion, the best story of animal fiction is "Red Fox" by Roberts. Like all good fiction, it is based upon facts and it presents a wholesome picture of the life of the successful fox. "The Silver Fox" by Thompson Seton is another interesting and delightful story. Although the Nights with Uncle Remus could scarcely be called nature stories, yet they are interesting in showing how the fox has become a part of folk-lore.

Fox tracks.

LESSON LXII

The Fox

Leading thought—The red fox is so clever that it has been able, in many parts of our country, to maintain itself despite dogs and men.

Method—This lesson is likely to be given largely from hearsay or reading. However, if the school is in a rural district, there will be plenty of hunters' stories afloat, from which may be elicited facts concerning the cunning and cleverness of the red fox. In such places there is also the opportunity in winter to study fox tracks upon the snow. The lesson may well be given when there are fox tracks for observation. The close relationship between foxes and dogs should be emphasized.

Observations and reading—1. Describe the fox's track. How does it differ from the track of a small dog?

2. Where does the fox make its home? Describe the den in which the young foxes live.

3. Describe the red fox, its color and form as completely as you can. What is the expression of its face? What is there peculiar about its tail? What is the use of this great bushy tail in the winter?

4. What is the food of the fox? How does it get its food? Is it a day or a night hunter? How does the fox benefit the farmer? How does it injure him? How does the fox carry home its heavy game, such as a goose or a hen?
5. Have you ever heard the fox bark? Did it sound like the bark of a dog? How does the fox express anger? Pleasure?

6. When chased by dogs, in what direction does the fox run? Describe all of the tricks which you know by which the fox throws the dog off the scent.

7. When are the young foxes born? How many in a litter? What color are they? How do they play with each other? How do they learn to hunt?

Supplementary reading—Red Fox by Roberts; Silver Fox by Thompson Seton; Little Beasts of Field and Wood, page 25; Squirrels and Other Fur Bearers, chapter 7; Fox Ways in Ways of Wood Folk; The Springfield Fox in Wild Animals I Have Known; Familiar Wild Animals; Familiar Life in Field and Forest, page 213; American Animals, page 264; Nights with Uncle Remus.
DOGS

Teacher’s Story

Not only to-day but in ancient days, before the dawn of history, the dog was the companion of man. Whether the wild species from whence he sprang, was wolf or jackal or some other similar animal, we do not know, but we do know that many types of dogs have been tamed independently by savages, in the region where their untamed relatives run wild. As the whelps of wolves, jackals and foxes are all easily tamed, and are most interesting little creatures, we can understand how they became companions to the children of the savage and barbarous peoples who hunted them.

In the earliest records of cave dwellers, in the picture writing of the ancient Egyptians and of other ancient peoples, we find record of the presence and value of the dog. But man, in historical times, has been able to evolve breeds that vary more in form than do the wild species of the present. There are 200 distinct breeds of dogs known to-day, and many of these have been bred for special purposes. The paleontologists, moreover, assure us that there has been a decided advance in the size and quality of the dog’s brain since the days of his savagery; thus, he has been the companion of man’s civilization also. It is not, therefore, to be wondered at that the dog is now the most companionable, and has the most human qualities and intelligence of all our domesticated animals.

Dogs run down their prey; it is a necessity, therefore, that they be equipped with legs that are long, strong and muscular. The cat, which jumps for her prey, has much more delicate legs but has powerful hips to enable her to leap. The dog’s feet are much more heavily padded than those of the cat, because in running, he must not stop to save his feet. Hounds often return from a chase with bleeding feet, despite the heavy pads, but the wounds are usually cuts between the toes. The claws are heavy and are not retractile; thus, they afford a protection to the feet when running, and they are also used for digging out game which burrows into the ground. They are not used for grasping prey like those of the cat and are used only incidentally in fighting, while the cat’s claws are the most important weapons in her armory. It is an interesting fact that Newfoundland dogs, which are such famous swimmers, have their toes somewhat webbed.
The dog's body is long, lean, and very muscular, a fat dog being usually pampered and old. The coat is of hair and is not of fine fur like that of the cat. It is of interest to note that the Newfoundland dog has an inner coat of fine hair comparable to that of the mink or muskrat. When a dog is running, his body is extended to its fullest length; in fact, it seems to "lie flat," the outstretched legs heightening the effect of extreme muscular effort of forward movement. A dog is master of several gaits; he can run, walk, trot, bound and crawl.

The iris of the dog's eye is usually of a beautiful brown, although this varies with breeds; in puppies, the iris is usually blue. The pupil is round like our own; and dogs cannot see well in the dark like the cat, but in daylight they have keen sight. The nose is so much more efficient than the eyes, that it is on the sense of smell the dog depends for following his prey and for recognizing friend and foe. The damp, soft skin that covers the nose, has in its dampness the conditions for carrying the scent to the wide nostrils; these are situated at the most forward part of the face, and thus may be lifted in any direction to receive the marvelous impressions, so completely beyond our comprehension. Think of being able to scent the track of a fox made several hours previously. Not only to scent it, but to follow by scent for many miles without ever having a glimpse of the fleeing foe! In fact, while running, the dog's attention seems to be focused entirely upon the sense of smell, for I have seen hounds pass within a few rods to the windward of the fox they were chasing, without observing him at all. When the nose of any of the moist-nosed beasts, such as cattle and dogs, becomes dry it is a sign of illness.

A light fall of damp snow gives the dog the best conditions for following a track by scent and a hound, when on the trail, will run until exhausted. There are many authentic observations which show that hounds have followed a fox for twenty-four hours without food, and probably with little rest.
The dog's weapons for battle, like those of the wolf, are his tushes: with these, he holds and tears his prey; with them, he seizes the woodchuck or other small animal through the back and shakes its life out. In fighting a larger animal, the dog leaps against it and often incidentally tears its flesh with his strong claws; but he does not strike a blow with his foot like the cat, nor can he hold his quarry with it.

Dog's teeth are especially fitted for their work. The incisors are small and sharp; the canine teeth or tushes are very long, but there are bare spaces on the jaws so that they are able to cross past each other; the molar teeth are not fitted for grinding, like the teeth of a cow, but are especially fitted for cutting, as may be noted if we watch the way a dog gnaws bones, first gnawing with the back teeth on one side and then on the other. In fact, a dog does not seem to need to chew anything, but simply needs to cut his meat in small enough pieces so that he can gulp them down without chewing. His powers of digesting unchewed food are something that the hustling American may well envy.

Of all domestic animals, the dog is most humanly understandable in expressing emotions. If delighted, he leaps about giving ecstatic little barks and squeals, his tail in the air and his eyes full of happy an-
ticipation. If he wishes to be friendly, he looks at us interestingly, comes over to smell of us in order to assure himself whether he has ever met us before, and then wags his tail as a sign of good faith. If he wishes to show affection, he leaps upon us and licks our face or hands with his soft, deft tongue and follows us jealously. When he stands at attention, he holds his tail stiff in the air, and looks up with one ear lifted as if to say, "Well, what's doing?" When angry, he growls and shows his teeth and the tail is held rigidly out behind, as if to convince us that it is really a continuation of his backbone. When afraid, he whines and lies flat upon his belly, often looking beseechingly up toward his master as if begging not to be punished; or he crawls away out of sight. When ashamed, he drops his tail between his legs and with drooping head and sidewise glance slinks away. When excited, he barks and every bark expresses high nervous tension.

Almost all dogs that chase their prey, bark when so doing, which would seem at first sight to be a foolish thing to do, in that it reveals their whereabouts to their victims and also adds an incentive to flight. But it must be borne in mind that dogs are descended from wolves, which naturally hunt in packs and do not stalk their prey. The baying of the hound is a most common example of the habit, and as we listen we can understand how, by following this sound, the pack is kept together. Almost all breeds of dogs have an acute sense of hearing. When a dog bays at the moon or howls when he hears music, it is simply a reversion to the wild habit of howling to call together the pack or in answer "to the music of the pack." It is interesting that our music, which is the flower of our civilization, should awaken the sleeping ancestral traits in the canine breast. But perhaps that, too, is why we respond to music, because it awakens strong, primitive emotions, and for the time, enables us to free ourselves from all conventional shackles and trammels.
LESSON LXIII
DOGS

Leading thought—The dog is a domesticated descendent of wolf-like animals and has retained certain of the habits and characteristics of his ancestors.

Method—For the observation lesson it would be well to have at hand, a well-disposed dog which would not object to being handled; a collie or a hound would be preferable. Many of the questions should be given to the pupils to answer from observations at home, and the lesson should be built upon the experience of the pupils with dogs.

Observations—1. Why are the legs of the dog long and strong in proportion to the body compared with those of the cat?
2. Compare the feet of the cat with those of the dog and note which has the heavier pads. Why is this of use to each?
3. Which has the stronger and heavier claws, the dog or the cat? Can the dog retract his claws so that they are not visible, as does the cat? Of what use is this arrangement to the dog? Are the front feet just like the hind feet? How many toe impressions show in the track of the dog?
4. What is the general characteristic of the body of the dog? Is it soft like that of the cat, or lean and muscular? What is the difference between the hair covering of the dog and cat? What is the attitude of the dog when running fast? How many kinds of gaits has he?
5. In general, how do the eyes of the dog differ from those of the cat? Does he rely as much upon his eyes for finding his prey as does the cat? Can a dog see in the dark? What is the color of the dog’s eyes?
6. Study the ear of the dog; is it covered? Is this outer ear movable, is it a flap, or is it cornucopia shaped? How is this flap used when the dog is listening? Roll a sheet of paper into a flaring tube and place the
small end upon your own ear, and note if it helps you to hear better the sounds in the direction toward which the tube opens? Note how the hound lifts his long earlaps, so as to make a tube for conveying sounds to his inner ear. Do you think that dogs can hear well?

7. What is the position of the nose in the dog's face? Of what use is this? Describe the nostrils; are they placed on the foremost point of the face? What is the condition of the skin that surrounds them? How does this condition of the nose aid the dog? What other animals have it? Does the dog recognize his friends or become acquainted with strangers by means of his sight or of his powers of smelling?

8. How long after a fox or rabbit has passed can a hound follow the track? Does he follow it by sight or by smell? What are the conditions most favorable for retaining the scent? The most unfavorable? How long will a hound follow a fox trail without stopping for rest or food? Do you think the dog is your superior in ability to smell?

9. How does a dog seize and kill his prey? How does he use his feet and claws when fighting? What are his especially strong weapons? Describe a dog's teeth and explain the reason for the bare spaces on the jaw next to the tushes. Does the dog use his tushes when chewing? What teeth does he use when gnawing a bone? Make a diagram of the arrangement of the dog's teeth.

10. How by action, voice, and especially by the movement of the tail does the dog express the following emotions: Delight, friendliness, affection, attention, anger, fear, shame, excitement? How does he act when chasing his prey? Why do wolves and dogs bark when following the trail? Do you think of a reason why dogs often howl at night or when listening to music? What should we feed to our pet dogs? What should we do to make them comfortable in other ways?

11. Tell or write a story of some dog of which you know by experience or hearsay.

"Klondike Jack".
The dog that pulled four hundred fifty pounds five hundred miles through the White Horse Pass in the winter of the first gold excitement.

passed can a hound follow the track? Does he follow it by sight or by smell? What are the conditions most favorable for retaining the scent? The most unfavorable? How long will a hound follow a fox trail without stopping for rest or food? Do you think the dog is your superior in ability to smell?

In pleasant mood.
A collie.
Of what use was the dog to the pioneer? How are dogs used in the Arctic regions? In Holland?

12. How many breeds of dogs do you know? Describe characters of such as follows: The length of the legs as compared with the body; the general shape of the body, head, ears, nose; color and character of hair on head, body and tail.

13. Find if you can the reasons which have led to the developing of the following breeds: Newfoundland, St. Bernard, mastiffs hounds, collies, spaniels, setters, pointers, bulldogs, terriers, and pugs.

Supplementary reading—“Stories of Brave Dogs” from St. Nicholas, the Century Co.; the following three stories from Thompson-Seton: “Chink” in Lives of the Hunted, “Snap” in Animal Heroes, “Wully” in Wild Animals I Have Known; Bob, Son of Battle; Mack, His Book, by Florence Leigh; Rab and his Friends; The Dog of Flanders; “Red Dog” in Kipling’s Jungle Stories; Animals of the World, Knight and Jenks, p. 80; Life of Animals, Ingersoll, p. 187.
An aristocrat.

THE CAT

Teacher's Story

If all people, the writer should regard the cat sympathetically, for when she was a baby of five months she was adopted by a cat. My self-elected foster-mother was Jenny, a handsome black and white cat, which at that time lost her first litter of kittens, through the attack of a savage cat from the woods. She was as Rachel crying for her children, when she seemed suddenly to comprehend that I, although larger than she, was an infant. She haunted my cradle, trying to give me milk from her own breasts; and later she brought half-killed mice and placed them enticingly in my cradle, coaxing me to play with them, a performance which pleased me much more than it did my real mother. Jenny always came to comfort me when I cried, rubbing against me, purring loudly, and licking me with her tongue in a way to drive mad the modern mother, wise as to the sources of children's internal parasites. This maternal attitude toward me lasted as long as Jenny lived, which was until I was nine years old. Never during those years did I lift my voice in wailing, that she did not come to comfort me; and even to-day I can remember how great that comfort was, especially when my naughtiness was the cause of my weeping, and when, therefore, I felt that the whole world, except Jenny, was against me.
Jenny was a cat of remarkable intelligence and was very obedient and useful. Coming down the kitchen stairs one day, she played with the latch and someone hearing her, opened the door. She did this several times, when one day she chanced to push down the latch, and thus opened the door herself. After that, she always opened it herself. A little later, she tried the trick on other doors, and soon succeeded in opening all the latched doors in the house, by thrusting one front leg through the handle, and thus supporting her weight and pressing down with the foot of the other on the thumb-piece of the latch. I remember, guests were greatly astonished to see her coming thus swinging into the sitting-room. Later she tried the latches from the other side, jumping up and trying to lift the hook; but now, her weight was thrown against the wrong side of the door for opening, and she soon ceased this futile waste of energy; but for several years, she let herself into all the rooms in this clever manner, and taught a few of her bright kittens to do the same.

A pet cat enjoys long conversations with favored members of the household. She will sit in front of her mistress and mew, with every appearance of answering the questions addressed her; and since the cat and the mistress each knows her own part of the conversation, it is perhaps more typical of society chatter than we might like to confess. Of our language, the cat learns to understand the call to food, its own name, "scat," and "No, No," probably inferring the meaning of the latter from the tone of voice. On the other hand, we understand when it asks to go out, and its polite recognition to the one who opens the door. I knew one cat which invariably thanked us when we let him in as well as out. When the cat is hungry, it mews pleadingly; when happy in front of the fire, it looks at us sleepy out of half-closed eyes and gives a short mew expressive of affection and content; or it purrs, a noise which we do not know how to imitate and which expresses perfectly the happiness of intimate companionship. When frightened the cat yowls, and when hurt squalls shrilly; when fighting, it is like a savage warrior in that it howls a war-song in blood-curdling strains, punctuated with a spitting expressive of fear and contempt; and unfortunately, its love song is scarcely less agonizing to the listener. The cat's whole body enters into the expression of its emotions. When feeling affectionate toward its mistress, it rubs against her gown, with tail erect, and vibrating with a purr which seems fundamental. When angry, it lays its ears back and lashes its tail back and forth, the latter being a sign of excitement; when frightened, its hair stands on end, especially the hair of the tail, making that expressive appendage twice its natural size; when caught in disobedience, the cat lets its tail droop, and when running lifts it in a curve.

While we feed cats milk and scraps from our own table, they have never become entirely civilized in their tastes. They always catch mice and other small animals and prove pestiferous in destroying birds. Jenny was wont to bring her quarry, as an offering, to the front steps of our home every night; one morning we found seven mice, a cotton-tail rabbit and two snakes, which represented her night's catch. The cat never chases its prey like the dog. It discovers the haunts of its victims,
and then lies in ambush, flattened out as still as a statue and all its feet beneath it, ready to make the spring. The weight of the body is a factor which enters in the blow with which the cat strikes down its victim, and thus stuns and which it later kills by gripping the throat with the strong tushes. She carries her victims as she does her kittens, by the back.

The cat’s legs are not long compared with the body, and it runs with a leaping gallop; the upper legs are armed with powerful muscles. It walks on the padded toes, five on the front feet and four of the hind feet. The cat needs its claws to be sharp and hooked, in order to seize and hold its prey, so they are kept safely sheathed when not thus used. If the claws struck the earth during walking, as do the dog’s, they would soon become dulled. When sharpening its claws it reaches high up against a tree or post, and strikes them into the wood with a downward scratch; this act is probably more for exercising the muscles which control the claws than for sharpening them.

The cat’s track is in a single line as if it had only two feet, one set directly ahead of the other. It accomplishes this by setting its hind feet exactly in the tracks made by the front feet. The cat can easily leap upward, landing on a window-sill five feet from the ground. The jump is made with the hind legs and the alighting is done silently on the front feet.

Cats’ eyes are fitted for seeing in the dark; in the daytime the pupil is simply a narrow, up and down slit; under excitement, and at night, the pupil covers almost the entire eye. At the back of the eye is a reflecting surface, which catches such dim light as there is, and by reflecting it enables the cat to use it twice. It is this reflected light, which gives the peculiar green glare to the eyes of all the cats when seen in the dark. Some night-flying moths have a like arrangement for utilizing the light, and their eyes glow like living coals. Of course, since the cat is a night hunter, this power of multiplying the rays of light is of great use. The iris of the eye is usually yellow, but in kittens it may be blue or green.

The cat’s teeth are peculiarly fitted for its needs. The six doll-like incisors of the upper and lower jaw are merely for scraping meat from bones. The two great tushes, or canines, on each jaw, with a bare place behind so that they pass each other freely, are sharp and hooked, and are for seizing and carrying prey. The cat is able to open its mouth as wide as a right angle, in order to better hold and carry prey. The back teeth, or molars, are four on each side in the upper jaw and three, below. They are sharp-edged wedges made for cutting meat fine enough, so that it may be swallowed.

The tongue is covered with sharp papillæ directed backwards, also used for rasping juices from meat. The cat’s nose is moist, and her sense of smell very keen, as is also her sense of hearing. The ears rise like two hollow half-cones on either
side of the head and are filled with sensitive hairs; they ordinarily open forward, but are capable of movement. The cat's whiskers consist of from twenty-five to thirty long hairs set in four lines, above and at the sides of the mouth; they are connected with sensitive nerves and are therefore true feelers. The cat's fur is very fine and thick, and is also sensitive; as can readily be proved, by trying to stroke it the wrong way. While the wild cats have gray or tawny fur, variously mottled or shaded, the more striking colors we see in the domestic cats are the result of man's breeding.

Cats are very cleanly in their habits. Puss always washes her face directly after eating, using one paw for a wash-cloth and licking it clean after she rubs her face. She cleans her fur with her rough tongue and also by biting; and she promptly buries objectionable matter. The mother cat is very attentive to the cleanliness of her kittens, licking them clean from nose tip to tail tip. The ways of the mother cat with her kittens do much to sustain the assertions of Mr. Seton and Mr. Long that young animals are trained and educated by their parents. The cat brings half-dazed mice to her kittens, that they may learn to follow and catch them with their own little claws. When she punishes them, she cuffs the ears by holding one side of the kitten's head firm with the claws of one foot, while she lays on the blows with the other. She carries her kittens by the nape of the neck, never hurting them. She takes them into the field when they are old enough, and shows them the haunts of mice, and does many things for their education and welfare. The kittens meantime train themselves to agility and dexterity, by playing rough and tumble with each other, and by chasing every small moving object, even to their own tails.

The cat loves warmth and finds her place beneath the stove or at the hearthside. She likes some people, and dislikes others, for no reason we can detect. She can be educated to be friendly with dogs and with birds. In feeding her, we should give her plenty of sweet milk, some cooked meat and fish of which she is very fond; and we should keep a bundle of catnip to make her happy, for even the larger cats of the wilderness seem to have a passionate liking for this herb. The cat laps milk with her rough tongue, and when eating meat, she turns the head this way and that, to cut the tough muscle with her back teeth.
Cats Should be Trained to Leave Birds Alone

Every owner of a cat owes it to the world to train puss to leave birds alone. If this training is begun during kittenhood, by switching the culprit every time it even looks at a bird, it will soon learn to leave them severely alone. I have tried this many times, and I know it is efficacious, if the cat is intelligent. We have never had a cat whose early training we controlled, that could ever be induced to even watch birds. If a cat is not thus trained as a kitten, it is likely to be always treacherous in this respect. But in case any one has a valuable cat which is given to catching birds, I strongly advise the following treatment which has been proved practicable by a friend of mine. When a cat has made the catch, take the bird away and sprinkle it with red pepper, and then give it back. One such treatment as this resulted in making one cat, which was an inveterate bird hunter, run and hide every time he saw a bird thereafter. Any persons taking cats with them to their summer homes, and abandoning them there to prey upon the birds of the vicinity, and to become poor, half-starved, wild creatures, ought to be arrested and fined. It is not only cruelty to the cats, but it is positive injury and damage to the community, because of the slaughter of beneficial birds which it entails.

LESSON LXIV

The Cat

Leading thought—The cat was made a domestic animal before man wrote histories. It gets prey by springing from ambush and is fitted by form of body and teeth to do this. It naturally hunts at night and has eyes fitted to see in the dark.

Method—This lesson may be used in primary grades by asking a few questions at a time and allowing the children to make their observations on their own kittens at home, or a kitten may be brought to school for this purpose. The upper grade work consists of reading and retelling or writing exciting stories of the great, wild, savage cats, like the tiger, lion, leopard, lynx and panther.

Observations—1. How much of Pussy's language do you understand? What does she say when she wishes you to open the door for her? How does she ask for something to eat? What does she say when she feels like conversing with you? How does she cry when hurt? When frightened? What noise does she make when fighting? When calling other cats? What are her feelings when she purrs? When she spits? How many things which you say does she understand?
2. How else than by voice does she express affection, pleasure and anger? When she carries her tail straight up in the air is she in a pleasant mood? When her tail "bristles up" how does she feel? What is it a sign of, when she lashes her tail back and forth?

3. What do you feed to cats? What do they catch for themselves? What do the cats that are wild live upon? How does the cat help us? How does she injure us?

4. How does a cat catch her prey? Does she track mice by the scent? Does she catch them by running after them as a dog does? Describe how she lies in ambush. How does she hold the mouse as she pounces upon it? How does she carry it home to her kittens?

5. Study the cat's paws to see how she holds her prey. Where are the sharp claws? Are they always in sight like a dog's? Does she touch them to the ground when she walks? Which walks the more silently, a dog or a cat? Why? Describe the cat's foot, including the toe-pads. Are there as many toes on the hind feet as on the front feet? What kind of a track does the cat make in the snow? How does she set her feet to make such a track? How does she sharpen her claws? How does she use her claws for climbing? How far have you ever seen a cat jump? Does she use her front or her hind feet in making the jump? On which feet does she alight? Does she make much noise when she alights?

6. What is there peculiar about a cat's eyes? What is their color? What is the color of kittens' eyes? What is the shape of the pupil in daylight? In the dark? Describe the inner lid which comes from the corner of the eye.

7. How many teeth has Puss? What is the use of the long tushes? Why is there a bare space behind these? What does she use her little front teeth for? Does she use her back teeth for chewing or for cutting meat?

8. How many whiskers has she? How long are they? What is their use? Do you think that puss has a keen sense of smell? Why do
you think so? Do you think she has a keen sense of hearing? How do the shape and position of the ears help in listening? In what position are the ears when puss is angry?

9. How many colors do you find in our domestic cats. What is the color of wild cats? Why would it not be beneficial to the wild-cat to have as striking colors as our tame cats? Compare the fur of the cat with the hair of the dog. How do they differ? If a cat chased her prey like the dog do you think her fur would be a too warm covering?

10. Describe how the cat washes her face. How does she clean her fur? How does her rough tongue help in this? How does the mother cat wash her kittens?

11. How does a little kitten look when a day or two old? How long before its eyes open? How does the cat carry her kittens? How does a kitten act when it is being carried? How does the mother cat punish her kittens? How does she teach them to catch mice? How do kittens play? How does the exercise they get in playing fit them to become hunters?

12. How should cats be trained not to touch birds? When must this training begin? Why should a person be punished for injury to the public who takes cats to summer cottages and leaves them there to run wild?

13. Where in the room does puss best like to lie? How does she sun herself? What herb does she like best? Does she like some people and not others? What strange companions have you known a cat to have? What is the cat’s chief enemy? How should we care for and make her comfortable?

14. Write or tell stories on the following subjects: (1) The things which my pet cat does; (2) The Wild Cat; (3) The Lion; (4) The Tiger; (5) The Leopard; (6) The Panther and the Mountain Lion; (7) The Lynx; (8) The History of Domestic Cats; (9) The Different Races of Cats, describing the Manx, the Persian and the Angora Cats.

Supplementary reading—The Life of Animals, Ingersoll; American Animals, Stone and Cram; Our Domestic Animals, Burkett; The Fireside Sphinx, Repplier; Concerning Cats, Winslow; The following animal stories from St. Nicholas Magazine: Cat Stories, Lion and Tiger Stories, Panther Stories.

Photo by Verne Morton
Little do we in America realize the close companionship that has existed in older countries, from time immemorial, between goats and people. This association began when man was a nomad, and took with him in his wanderings, his flocks, of which goats formed the larger part. He then drank their milk, ate their flesh, wove their hair into raiment, or made cloth of their pelts, and used their skins for water bags. Among peoples of the East all these uses continue to the present day. In the streets of Cairo, old Arabs may be seen with goat skins filled with water upon their backs; and in any city of Western Asia or Southern Europe, flocks of goats are driven along the streets to be milked in sight of the consumer.

In order to understand the goat’s peculiarities of form and habit, we should consider it as a wild animal, living upon the mountain heights amid rocks and snow and scant vegetation. It is marvelously sure-footed and when on its native mountains, it can climb the sharpest crags and leap chasms. This peculiarity has been seized upon by showmen who often exhibit goats which walk on the tight rope with ease, and even turn themselves upon it without falling. The instinct for climbing still lingers in the domestic breeds, and in the country the goat may be seen on top of stone piles or other objects, while in city suburbs, its form may be discerned on the roofs of shanties and stables.

It is a common saying that a goat will eat anything, and much sport is made of this peculiarity. This fact has more meaning for us when we realize that wild goats live in high altitudes, where there is little plant life, and are therefore, obliged to find sustenance on lichens, moss and such scant vegetation as they can find.
The goat is closely allied to the sheep, differing from it in only a few particulars; its horns rise from the forehead curving over backward and do not form a spiral like those of the ram; its covering is usually of hair, and the male has a beard from which we get the name goatee; the goat has no gland between the toes, and it does have a rank and disagreeable odor. In a wild state, it usually lives a little higher up the mountains than do the sheep, and it is a far more intelligent animal. Mary Austin says: "Goats lead naturally by reason of a quicker instinct, forage more freely and can find water on their own account, and give voice in case of alarm. Goat leaders exhibit jealousy of their rights to be first over the stepping-stones or to walk the teetering log bridges at the roaring creeks." On the great plains, it is a common usage to place a few goats in a flock of sheep, because of the greater sagacity of these animals as leaders, and also as defenders in case of attack.

Goats' teeth are arranged for cropping herbage and especially for browsing. There are six molar teeth on each side of each jaw; there are eight lower incisors and none above. The goat's sense of smell is very acute; the ears are movable and the sense of hearing is keen; the eyes are full and very intelligent; the horns are somewhat flattened and angular and often knobbed somewhat in front, and curve backward above the neck; they are, however, very efficient as weapons of defence. The legs are strong, though not large, and are well fitted for leaping and running. The feet have two hoofs, that is, the animal walks upon two toe-nails. There are two smaller toes behind

Zaraibi milk goats of Egypt.

and above the hoofs. The goat can run with great rapidity. The tail of the goat is short like that of the deer, and does not need to be amputated like that of the sheep. Although the normal covering of the goat is hair, there are some species which have a more or less woolly coat. When angry the goat shakes its head, and defends itself by butting with the head, also by striking with the horns, which are very sharp. Goats are very tractable and make affectionate pets when treated with kindness; they display far more affection for their owner than do sheep.

Our famous Rocky Mountain goat, although it belongs rather to the antelope family, is a large animal, and is the special prize of the hunter; however, it still holds its own in the high mountains of the Rocky and

Cascade Ranges. Both sexes have slender black horns, white hair, and black feet, eyes and nose. Owen Wister says of this animal: "He is white, all white, and shaggy, and twice as large as any goat you ever saw. His white hair hangs long all over him like a Spitz dog's or an Angora cat's; and against its shaggy white mass the blackness of his hoofs and horns, and nose looks particularly black. His legs are thick, his neck is thick, everything about him is thick, save only his thin black horns. They're generally about six (often more than nine) inches long, they spread very slightly, and they curve slightly backward. At their base they are a little rough, but as they rise they become cylindrically smooth and taper to an ugly point. His hoofs are heavy, broad and blunt. The female is lighter than the male, and with horns more slender, a trifle. And (to return to the question of diet) we visited the pasture where the herd (of thirty-five) had been, and found no signs of grass growing or grass eaten; there was no grass on that mountain. The only edible substance
was a moss, tufted, stiff and dry to the touch. I also learned that the goat is safe from predatory animals. With his impenetrable hide and his disemboweling horns he is left by the wolves and mountain lions respectfully alone." (See American Animals, p. 57; Camp Fires of a Naturalist, chapters VIII and XIII).

Milch Goats—Many breeds of these have been developed, and the highest type is, perhaps, found in Switzerland. The Swiss farmers have found the goat particularly adapted to their high mountains and have used it extensively; thus, goats developed in the Saane and Toggenburg valleys have a world-wide reputation. Above these valleys the high mountains are covered with perpetual snow, and winter sets in about November 1st, lasting until the last of May. The goats are kept with the cows in barns and fed upon hay; but as soon as the snow is gone from the valleys and the lower foot-hills, the cattle and goats are sent with the herders and boy assistants, to the grazing grounds. A bell is put upon the cow that leads the herd so as to keep it together and the boys, in their gay peasant dresses, are as happy as the playful calves and goats to get out in the spring sunshine. The herds follow the receding snows up the mountains until about midsummer, when they reach the high places of scanty vegetation; then they start on the downward journey, returning to the home and stables about November 1st. The milk from goats is mixed with that from cows to make cheese, and this cheese has a wide reputation; some of the varieties are: Roquefort, Schweitzer and Altenburger. Although the cheese is excellent, the butter made from goat's milk is quite inferior to that made from the cow's. The milk, when the animals are well taken care of, is exceedingly nourishing; it is thought to be the best milk in the world for children. Usually, the trouble with goat's milk is, that the animals are not kept clean nor is care taken in milking. Germany has produced many distinct and excellent breeds of milch goats; the Island of Malta, Spain, England, Ireland, Egypt and Nubia have each developed noted breeds. Of all these, the Nubias give the most milk, sometimes yielding from four to six quarts per day, while an ordinary goat is considered fairly good if it yields two quarts per day.
The Mohair Goats—There are two noted breeds of goats whose hair is used extensively for weaving into fabrics; one of these is the Cashmere and the other the Angora. The Cashmere goat has long, straight, silky hair for an outside coat and has a winter under-coat of very delicate wool. There are not more than two or three ounces of this wool upon one goat, and this is made into the famous Cashmere shawls; ten goats furnish barely enough of this wool for one shawl. The Cashmere goats are grown most largely in Thibet, and the wool is shipped from the high tableland to the Valley of Cashmere, and is made into shawls. It requires the work of several people for a year to produce one of these famous shawls.

The Angora goat has a long, silky and very curly fleece. These goats were first discovered in Angora, a city of Asia Minor south of the Black Sea, and some 200 miles southeast from Constantinople. The Angora goat is a beautiful and delicate animal, and furnishes most of the mohair, which is made into the cloths known as mohair, alpaca, camel's hair and many other fabrics. The Angora goat has been introduced into America, in California, Texas, Arizona, and to some extent in the Middle West. It promises to be a very profitable industry. (See Farmers' Bulletin No. 137, "The Angora Goat," United States Department of Agriculture.)

The skins of goats are used extensively; morocco, gloves and many other articles are made from them. In the Orient, the skin of the goat is used as a bag in which to carry water and wine.

References—American Animals, p. 55; Neighbors with Claws and Hoofs, p. 190; Familiar Animals, pp. 169 and 183; Camp Fires of a Naturalist, chapters VIII and XIII; Lives of Animals.
LESSON LXV

The Goat

Leading thought—Goats are among our most interesting domesticated animals, and their history is closely interwoven with the history of the development of civilization. In Europe, their milk is made into cheese that has a world-wide fame; and from the hair of some of the species, beautiful fabrics are woven. The goat is naturally an animal of the high mountains.

Method—A span of goats harnessed to a cart is second only to ponies, in a child’s estimation; therefore, the beginning of this lesson may well be a span of goats thus employed. The lesson should not be given unless the pupils have an opportunity for making direct observations on the animal’s appearance and habits. There should be some oral and written work in English done with this lesson. Following are topics for such work: “The Milch Goat of Switzerland,” “How Cashmere Shawls are Made,” “The Angora Goat,” “The Chamois.”

Observations—1. Do you think that goats like to climb to high points? Are they fitted to climb steep, inaccessible places? Can they jump off steep places in safety? How does it happen the goat is sure-footed? How do its legs and feet compare with those of the sheep?

2. What does the goat eat? Where does it find its natural food on mountains? How are the teeth arranged for cutting its food? Does a goat chew its cud like a cow?

3. What is the covering of the goat? Describe a billy-goat’s beard. Do you suppose this is for ornament? For what is goat’s hair used?

4. Do you think the goat has a keen sense of sight, of hearing and of smell? Why? Why did it need to be alert and keen when it lived wild upon the mountains? Do you think the goat is intelligent? Give instances of this?

5. Describe the horns. Do they differ from the horns of the sheep? How does a goat fight? Does he strike head on, like the sheep, or sidewise? How does he show anger?

6. What noises does a goat make? Do you understand what they mean?

7. Describe the goat, its looks and actions. Is the goat’s tail short at first or does it have to be cut off like the lamb’s tail? Where and how is goat’s milk used? What kinds of cheese are made from it? For what is its skin used? Is its flesh ever eaten?

Everyone knows the gayety of young kids, which prompts them to cut the most amusing and burlesque capers. The goat is naturally capricious and inquisitive, and one might say crazy for every species of adventure. It positively delights in perilous ascensions. At times it will rear and threaten you with its head and horns, apparently, with the worst intentions, whereas it is usually an invitation to play. The bucks, however, fight violently with each other; they seem to have no consciousness of the most terrible blows. The ewes themselves are not exempt from this vice.

They know very well whether or not they have deserved punishment. Drive them out of the garden, where they are forbidden to go, with a whip and they will flee without uttering a sound; but strike them without just cause and they will send forth lamentable cries.

Charles William Burkett in "Our Domestic Animals."
THE SHEEP

Teacher's Story

"The earliest important achievement of ovine intelligence is to know whether its own notion or another's is most worth while, and if the other's, which one? Individual sheep have certain qualities, instincts, competences, but in the man-herded flocks these are superseded by something which I shall call the flock mind, though I cannot say very well what it is, except that it is less than the sum of all their intelligences. This is why there have never been any notable changes in the management of flocks since the first herder girt himself with a wallet of sheep-skin and went out of his cave-dwelling to the pastures."—"The Flock," by Mary Austin.

Both sheep and goats are at home on mountains, and sheep especially, thrive best in cool, dry locations. As wild animals, they were creatures of the mountain crag and chasm, although they frequented more open places than the mountain goats, and their wool was developed to protect them from the bitter cold of high altitudes. They naturally gathered in flocks, and sentinels were set to give warning of the approach of danger; as soon as the signal came, they made their escape, not in the straight away race like the deer, but in following the leader over rock, ledge and precipice to mountain fastnesses where wolf nor bear could follow. Thus, the instinct of following the leader blindly, came to be the salvation of the individual sheep.

The teeth of the sheep are like those of the goat, eight incisors below and none on the upper row, and six grinding teeth at the back of each side
of each jaw. This arrangement of teeth on the small, delicate, pointed jaws enables the sheep to crop herbage where cattle would starve; it can cut the small grass off at its roots, and for this reason, where vast herds of sheep range, they leave a desert behind them. This fact brought about a bitter feud between the cattle and sheep men in the far West. In forests, flocks of sheep completely kill all underbrush, and now they are not permitted to run in government reserves.

The sheep's legs are short and delicate below the ankle. The upper portion is greatly developed to help the animal in leaping, a peculiarity to which we owe the "leg of lamb" as a table delicacy. The hoof is cloven, that is, the sheep walks upon two toes; it has two smaller toes above and behind these. There is a little gland between the front toes which secretes an oily substance, which perhaps serves in preventing the hoof from becoming too dry. The ears are large and are moved to catch better the direction of sound. The eyes are peculiar; in the sunlight the pupil is a mere slit, while the iris is yellow or brownish, but in the dark, even of the stable, the pupils enlarge, almost covering the eye. The ewes either lack horns or have small ones, but the horns of wild rams are large, placed at the side of the head and curled outward in a spiral. These horns are perhaps not so much for fighting the enemy as for rival rams. The ram can strike a hard blow with head and horns, coming at the foe head on, while the goat always strikes sidewise. So fierce is the blow of the angry sheep, that an ancient instrument of war was fashioned like a ram's head and used to knock down walls, and was called a battering ram. A sheep shows anger by stamping the ground with the front feet. The habit of rumination enables the sheep to feed in a flock and then retire to some place to rest and chew the cud, a performance peculiarly funny in the sheep.

A sheep of pedigree, Shropshire ram.
Sheep under attack and danger are silent; ordinarily they keep up a constant, gentle bleating to keep each other informed of their whereabouts; they also give a peculiar call when water is discovered, and another to inform the flock that there is a stranger in the midst; they also give a peculiar bleat, when a snake or other enemy which they conquer, is observed. Their sense of smell is very acute. Mary Austin says, “Young lambs are principally legs, the connecting body being simply a contrivance for converting milk into more leg, so you understand how it is that they will follow the flock in two days and are able to take the trail in a fortnight, traveling four and five miles a day, falling asleep on their feet and tottering forward in the way.”

The older lambs have games which they play untiringly, and which fit them to become active members of the flock; one, is the regular game of “Follow My Leader,” each lamb striving to push ahead and attain the place of leader. In playing this the head lamb leads the chase over most difficult places, such as logs, stones and across brooks; thus is a training begun which later in life may save the flock. The other game is peculiar to stony pastures; a lamb climbs to the top of a boulder and its comrades gather around and try to butt it off; the one which succeeds in doing this, climbs the rock and is “it.” This game leads to agility and sure-footedness. A lamb’s tail is long and is most expressive of lambkin bliss, when feeding time comes; but, alas! it has to be cut off so that later it will not become matted with burrs and filth. In southern Russia there is a breed of sheep with large, flat, fat tails which are esteemed as a great table delicacy. This tail becomes so cumbersome that wheels are placed beneath it, so that it trundles along behind its owner.

We have a noble species of wild sheep in the Rocky Mountains which is likely to become extinct soon. The different breeds of domesticated sheep are supposed to have been derived from different wild species. Of the domesticated varieties, we have the Merinos which originated in Spain and which give beautiful, long, fine wool for our fabrics; but their flesh is not very attractive. The Merinos have wool on their faces and legs and have wrinkled skins. The English breeds of sheep have been especially developed for mutton, although their wool is valuable. Some of these like the Southdown, Shropshire, and Dorset, give a medium length of wool, while the Cotswold has very long wool, the ewes having long strings of wool over their eyes in the fashion of “bangs.”

The dog, as descended from the wolf, is the ancient enemy of sheep; and even now after hundreds of years of domestication, some of our dogs will revert to savagery and chase and kill sheep. This, in fact, has been one of the great drawbacks to sheep raising in the Eastern United States. The collie, or sheep-dog, has been bred so many years as the special care-taker of sheep, that a beautiful relationship has been
established between these dogs and their flocks. For instances of this, read the chapter on sheep-dogs in A Country Reader; "Wully" in Wild Animals I Have Known, and "Bob, Son of Battle."

LESSON LXVI

THE SHEEP

Leading thought—Sheep live naturally in high altitudes. When attacked by enemies, they follow their leader over difficult and dangerous mountain places.

Method—The questions of this lesson should be given to the pupils and the observations should be made upon the sheep in pasture or stable. Much written work may be done in connection with this lesson. The following topics are suggested for themes: "The Methods by which Wool is Made into Cloth," "The Rocky Mountain Sheep," "The Sheep-herders of California and their Flocks," "The True Story of a Cosset Lamb."

Observations—1. What is the chief character that separates sheep from other animals? What is the difference between wool and hair? Why is wool of special use to sheep in their native haunts? Is there any hair on sheep?

2. Where do the wild sheep live? What is the climate in these places? Does wool serve them well on this account? What sort of pasturage do sheep find on mountains? Could cows live where sheep thrive? Describe the sheep's teeth and how they are arranged to enable it to crop vegetation closely? What happens to the vegetation on the range, when a great flock of sheep passes over it? Why are sheep not allowed in our forest preserves?
3. What are the chief enemies of sheep in the wilderness? How do the sheep escape them? Describe the foot and leg of the sheep and explain how they help the animal to escape its enemies. We say of certain men that they "follow like a flock of sheep." Why do we make this comparison? What has this habit of following the leader to do with the escape of sheep from wolves and bears?

4. How do sheep fight? Do both rams and ewes have horns? Do they both fight? How does the sheep show anger? Give your experience with a cross cosset lamb.

5. Do you think that sheep can see and hear well? What is the position of the sheep's ears when it is peaceful? When there is danger? How do the sheep's eyes differ from those of the cow?

6. Does the sheep chew its cud like the cow? Describe the actions performed by the sheep. How is this habit of cud chewing of use to the wild sheep?

7. Describe a young lamb. Why has it such long legs? How does it use its tail to express joy? What happens to this tail later? What games have you seen lambs play? Tell all the stories of lambs that you know.

8. How much of sheep language do you understand? What is the use to the wild flock of the constant bleating?

9. For what purposes do we keep sheep? How many breeds of sheep do you know? What are the chief differences between the English breeds and the Merinos? Where and for what purposes is the milk of sheep used?

10. Have you ever seen a collie looking after a herd of sheep? If so, describe his actions. Did you ever know of dogs killing sheep? At what time of day or night was this done? Did you ever know of one dog attacking a flock of sheep alone. What is there in the dog's ancestry which makes two or three dogs, when hunting, give chase and attack sheep?
A herd of ponies in the Isle of Shetland guarded by a sheep-dog.

THE HORSE

Teacher’s Story

“There was once a little animal no bigger than a fox,
And on five toes he scrambled over Tertiary rocks.
They called him Eohippus, and they called him very small,
And they thought him of no value when they thought of him at all.

Said the little Eohippus, I am going to be a horse!
And on my middle finger nails to run my earthly course!
I am going to have a flowing tail! I am going to have a mane!
And I am going to stand fourteen hands high on the Psychozoic plain!”

—Mrs. Stetson.

It was some millions of years ago, that Eohippus lived out in the Rocky Mountain Range; its fore feet had four toes and the splint of the fifth; the hind feet had three toes and the splint of the fourth. Eohippus was followed down the geologic ages by the Orohippus and the Mesohippus and various other hippuses, which showed in each age a successive enlargement and specialization of the middle toe and the minimizing and final loss of the others. This first little horse with many toes, lived when the earth was a damp, warm place and when animals needed toes to spread out to prevent them from miring in the mud. But as the ages went on, the earth grew colder and drier, and a long leg ending in a single hoof, was very serviceable in running swiftly over the dry plains; and according to the story read in the fossils of the rocks, our little American horses migrated to South America; and also trotted dry-shod over to Asia in the Mid-pleocine age, arriving there sufficiently early to become the companion of prehistoric man. In the meantime, horses were first hunted by
savage man for their flesh, but were later ridden. At present, there are wild horses in herds on the plains of Tartary; and there are still sporadic herds of mustangs on the great plains of our own country, although for the most part, they are branded and belong to someone, even though they live like wild horses; these American wild horses are supposed to be descendents of those brought over centuries ago by the Spaniards. The Shetland ponies are also wild in the islands north of Scotland, and the zebras roam the plains of Africa the most truly wild of all. In a state of wildness, there is always a stallion at the head of a herd of mares, and he has to win his position and keep it by superior strength and prowess. Fights between stallions are terrible to witness, and often result in the death of one of the participants. The horse is well armed for battle; his powerful teeth can inflict deep wounds and he can kick and strike hard with the front feet; still more efficient is the kick made with both hind feet while the weight of the body is borne on the front feet, and the head of the horse is turned so as to aim well the terrible blow. There are no wild beasts of prey which will not slink away to avoid a herd of horses. After attaining their growth in the herd with their mothers, the young males are forced by the leader to leave and go off by themselves; in turn, they must by their own strength and attractions, win their following of mares. However, there are times and places where many of these herds join, making large bands wandering together.

The length of the horse's leg was evidently evolved to meet the need for flight before fierce and swift enemies, on the great ancient plains. The one toe, with its strong, sharp hoof, makes a fit foot for such a long leg, since it strikes the ground with little waste of energy and is sharp enough not to slip, but it is not a good foot for marshy places; a horse will mire where a cow can pass in safety. The development of the middle toe into a hoof results in lifting the heel and wrist far up the leg, making them appear to be the knee and elbow, when compared with the human body.

The length of neck and head are necessary in order that an animal, with such length of leg as the horse, may be able to graze. The head of the horse tells much of its disposition; a perfect head should be not too large, broad between the eyes and high between the ears, while below the eyes, it should be narrow. The ears, if lopped or turned back, denote a treacherous disposition. They should point upward or forward; the ears laid back is always a sign that the horse is angry; sensitive, quick-moving
ears indicate a high-strung, sensitive animal. The eyes are placed so that the horse can see in front, at the side and behind, the last being necessary in order to aim a kick. Hazel eyes are usually preferred to dark ones, and they should be bright and prominent. The nostrils should be thin-skinned, wide-flaring and sensitive; as a wild animal, scent was one of the horse’s chief aids in detecting the enemy. The lips should not be too thick and the lower jaw should be narrow where it joins the head.

The horse’s teeth are peculiar; there are six incisors on both jaws; behind them is a bare space called the bar, of which we have made use for placing the bit. Back of the bar, there are six molars or grinders on each side of each jaw. At the age of about three years, canine teeth or tushes appear behind the incisors; these are more noticeable in males, and never seem to be of much use. Thus, the horse has on each jaw, when full-grown, six incisors, two canines, and twelve molars, making forty teeth in all. The incisors are prominent and enable the horse to bite the grass more closely than can the cow. The horse when chewing, does not have the sidewise motion of the jaws peculiar to the cow and sheep.

The horse’s coat is, when rightly cared for, glossy and beautiful; but if the horse is allowed to run out in the pasture all winter, the coat becomes very shaggy, thus reverting to the condition of wild horses which stand in need of a warmer coat for winter; the hair is shed every year. The mane and the forelock are useful in protecting the head and neck from flies; the tail is also an efficient fly-brush. Although the mane and tail

Hoofs of horses from earliest ages to the present time, arranged in pairs, hind and front.
have thus a practical value, they add greatly to the animal's beauty. To dock a horse's tail as an ornament is as absurd as the sliced ears and welted cheeks of savages; and horses thus mutilated suffer greatly from the attacks of flies.

Owing to the fact that wild horses made swift flight from enemies, the colts could not be left behind at the mercy of wolves. Thus it is, the colt like the lamb, is equipped with long legs from the first, and can run very rapidly; as a runner, it could not be loaded with a big compound stomach full of food, like the calf, and therefore, must needs take its nourishment from the mother often. The colt's legs are so long that, in order to graze, it spreads the front legs wide apart in order that it may reach the grass with its mouth. When the colt or the horse lies down out of doors and in perfect freedom, it lies flat upon the side. In lying down, the hind quarters go first, and in rising, the front legs are thrust out first.

The horse has several natural gaits and some that are artificial. Its natural methods of progression are the walk, the trot, the amble, the gallop. When walking there are always two or more feet on the ground and the movement of the feet consists in placing successively the right hind foot, the right fore foot, left hind foot, left fore foot, right hind foot, etc. In trotting, each diagonal pair of legs is alternately lifted and thrust forward, the horse being unsupported twice during each stride. In ambling, the feet are moved as in the walk, only differing in that a hind foot or a fore foot is lifted from the ground, before its fellow fore foot or hind foot is set down. In a canter, the feet are landed on the ground in the same sequence as a walk but much more rapidly; and in the gallop, the spring is made from the fore foot and the landing is on the diagonal hind foot and just before landing, the body is in the air and the legs are all bent beneath it.
An excellent horseman once said to me, "The whip may teach a horse to obey the voice, but the voice and hand control the well-broken horse," and this epitomizes the best horse training. He also said, "The horse knows a great deal, but he is too nervous to make use of his knowledge when he needs it most. It is the horse's feelings that I rely on. He always has the use of his feelings and the quick use of them." It is a well-known fact that those men who whip and scold and swear at their horses, are meantime showing to the world that they are fools in this particular business. Many of the qualities which we do not like in our domesticated horses, were most excellent and useful when the horses were wild, for instance, the habit of shying was the wild horse's method of escaping the crouching foe in the grass. This habit as well as many others is best controlled by the voice of the driver instead of a blow from the whip.

Timothy hay, or hay mixed with clover, form good, bulky food for the horse, and oats and corn are the best concentrated food. Oats are best for driving-horses and corn for the working team. Dusty hay should not be fed to a horse; but if unavoidable, it should always be dampened before feeding. A horse should be fed with regularity, and should not be used for a short time after having eaten. If the horse is not warm, it should be watered before feeding, and in the winter the water should have the chill taken off. The frozen bit should be warmed before being placed in the horse's mouth; if anyone doubts the wisdom of this, let him put a frozen piece of steel in his own mouth. The tight-drawn, cruel use of the over check-rein should not be permitted, although a moderate check is often needed and is not cruel. When the horse is sweating, it should be blanketed immediately if hitched outside in cold weather; but in the barn, the blanket should not be put on until the perspiration has stopped steaming. The grooming of a horse is a part of its rights, and its legs should receive more attention during this process than its body, a fact not always well understood.

The breeds of horses may always be classified more or less distinctly as follows: Racers or thoroughbreds, the saddle-horse, or hunter; the
coach-horse; the draft-horse and the pony. For a description of breeds see dictionaries or cyclopedias. Of the draft-horses, the Percherons, Shires and Clydesdales are most common; of the carriage and coach-horses, the English hackney and the French and German coach-horses are famed examples. Of the roadster breeds, the American trotter, the American saddle-horse and the English thoroughbred are most famous.

A good coacher.

LESSON LXVII

The Horse

Leading thought—The horse as a wild animal depended largely upon its strength and fleetness to escape its enemies, and these two qualities have made it of greatest use to man.

Method—Begin this study of the horse with the stories of wild horses. "The Pacing Mustang" in Wild Animals I Have Known, is an excellent story to show the habits of the herds of wild horses; Chapter first in A Country Reader and the story of horses in Life of Animals are excellent as a basis for study. Before beginning actual study of the domestic horses, ask for oral or written English exercises descriptive of the lives of the wild horses. Get Remington's pictures illustrating the wild horses of America. After the interest has been thus aroused the following observations may be suggested, a few at a time, to be made incidentally in the street or in the stable.

Observations—1. Compare the length of the legs of the horse with its height. Has any other domestic animal legs as long in proportion? What habits of the ancestral wild horses led to the development of such long legs? Do you think the length of the horse's neck and head correspond to the length of its legs? Why?
2. Study the horse’s leg and foot. The horse walks on one toe. Which toe do you think it is? What do we call the toe-nail of the horse? What advantage is this sort of a foot to the horse? Is it best fitted for running on dry plains or for marshy land? Does the hoof grow as our nails do? Do you know whether there were ever any horses with three toes or four toes on each foot? Make a sketch of the horse’s front and hind leg and label those places which correspond to our wrist, elbow, shoulder, hand, heel, knee and hip.

3. Where are the horse’s ears placed on the head? How do they move? Do they flap back and forth like the cow’s ears when they are moved, or do they turn as if on a pivot? What do the following different positions of the horse’s ears indicate: When lifted and pointing forward? When thrown back? Can you tell by the action of the ears whether a horse is nervous and high-strung or not?

4. What is the color of the horse’s eyes? The shape of the pupil? What advantage does the position of the eyes on the head give to the wild horse? Why do we put blinders on a horse? Can you tell by the expression of the eye the temper of the horse?

5. Look at the mouth and nose. Are the nostrils large and flaring? Has the horse a keen sense of smell? Are the lips thick or thin? When taking sugar from the hand, does the horse use teeth or lips?

6. Describe the horse’s teeth. How many front teeth? How many back teeth? Describe the bar where the bit is placed. Are there any
canine teeth? If so, where? Do you know how to tell a horse's age by its teeth? (See Elements of Agriculture, Warren, page 304, and The Horse, Roberts, page 246.) Can a horse graze the grass more closely than a cow? Why? When it chews does it move the jaws sidewise like the cow? Why? Why did the wild horses not need to develop a cud-chewing habit?

7. What is the nature of the horse's coat in summer? If the horse runs in the pasture all winter, how does its coat change? When does the horse shed its coat? What is the use of the horse's mane, forelock and tail? Do you think it is treating the horse well to dock its tail?

8. Why do colts need to be so long-legged? How does a colt have to place its front legs in order to reach down and eat the grass? Does the colt need to take its food from the mother often? How does it differ from the calf in this respect? How has this difference of habit resulted in a difference of form in the calf and colt?

9. When the horse lies down which part goes down first? When getting up which rises first? How does this differ from the method of the cow? When the horse lies down to sleep does it have its legs partially under it like the cow?

10. In walking which leg moves first? Second? Third? Fourth? How many gaits has the horse? Describe as well as you can all of these gaits. (See pictures illustrating the word "movement" in the Standard Dictionary.)

11. Make a sketch of a horse showing the parts. (See Webster's Unabridged). When we say a horse is fourteen hands high what do we mean?

12. In fighting, what weapons does the horse use and how?

13. In training a horse, should the voice or the whip be used the most? What qualities should a man have to be a good horse trainer? Why is shying a good quality in wild horses? How should it be dealt with in the domestic horse?

14. What sort of feed is best for the horse? How and when should the horse be watered? Should the water be warmed in cold weather? Why? Should the bit be warmed in winter before putting it in a horse's mouth? Why? Should a tight over check-rein be used when driving? Why? When the horse has been driven until it is sweating what are the rules for blanketing it when hitched out of doors and when hitched in the barn? What is your opinion of a man who lets his horse stand waiting in the cold, unblanketed in the village street. If horses were kept out of doors all the time would this treatment be so cruel and dangerous? Why? Why should dusty hay be dampened before it is fed to a horse? Why should a horse be groomed? Which should receive the most attention, the legs or the body?

15. How many breeds of horses do you know? What is the use of each? Describe as well as you can the characteristics of the following breeds: The thoroughbred, the hackney, and other coach-horses; the American trotter, the Percheron, the Clydesdale.

Supplementary reading—The Horse, Roberts; Elements of Agriculture, Warren; Life of Animals, Cram; Neighbors with Claws and Hoofs; A Country Reader; Agriculture for Beginners; Black Beauty; John Brent, by Theodore Withrop; Half Hours with Mammals, Holder; Chapters on Animals, Hammerton; "Kaweah's Run" in Claws and Hoofs.

Many horses shy a good deal at objects they meet on the road. This mostly arises from nervousness, because the objects are not familiar to them. Therefore, to cure the habit, you must get your horse accustomed to what he sees, and so give him confidence.

. . . Be careful never to stop a horse that is drawing a vehicle or load in the middle of a hill, except for a rest; and if for a rest, draw him across the hill and place a big stone behind the wheel, so that the strain on the shoulder may be eased. Unless absolutely necessary never stop a horse on a hill or in a rut, so that when he starts again it means a heavy tug. Many a horse has been made a jibber and his temper spoilt by not observing this rule.

—H. B. M. Buchanan in "A Country Reader."
The original wild cattle of America.

Photo by John L. Rich.

CATTLE

Teacher's Story

That in numbers there is safety, is a basic principle in the lives of wild cattle, probably because their chief enemies, the wolves, hunted in packs. It has often been related that, when the herd is attacked by wolves, the calves are placed at the center of the circle made by the cattle, standing with heads out and horns ready for attack from every quarter. But when a single animal, like a bear or tiger, attacks any of the herd, they all gather around it in a narrowing circle of clashing horns, and many of these great beasts of prey have thus met their death. The cow is as formidable as the bull to the enemy, since her horns are strong and sharp and she tosses her victim, unless it is too large. The heavy head, neck and short massive horns of the bull, are not so much for defence against enemies as against rival bulls. The bull not only tosses andgores his victim, but kneels or tramples upon it. Both have effective weapons of defence in the hind feet, which kick powerfully. The buffalo bull of India will attack a tiger single handed, and usually successfully. It is a strange thing that all cattle are driven mad by the smell of blood, and weird stories are told of the stampeding of herds from this cause, on the plains of our great West.

Cattle are essentially grass and herbage eaters, and their teeth are peculiarly arranged for this. There are eight front teeth on the lower jaw, and a horny pad opposite them on the upper jaw. Back of these on each jaw there is a bare place and six grinding teeth on each side. As a cow crops the herbage, her head is moved up and down to aid in severing the leaves, and the peculiar sound of the tearing of the leaves thus made is not soon forgotten by those who have heard it. In the wild or domesticated state the habit of cud-chewing is this: The cattle graze in mornings and evenings, swallowing the food as fast as cropped, and storing it
mother; the young for a long journey; “frozen” and will never stir unless actually touched. As the mother is obliged to be absent for some time grazing with the herd, the calf is obliged to go without nourishment for a number of hours, and so it is provided with a large compound stomach which, if filled twice per day, suffices to insure health and growth. The cow, on the other hand, giving her milk out only twice per day, needs a large udder in which to store it. The size of the udder is what has made the cow useful to us as a milch animal.

A fine cow is a beautiful creature, her soft yellow skin beneath the sleek coat of short hair, the well proportioned body, the mild face, crowned with spreading, polished horns and illuminated with large gentle eyes, are all in their ruminating stomachs. During the heat of the day, they move to the shade, preferably to the shady banks of streams, and there in quiet the food is brought up, a small portion at a time, and chewed with a peculiar sidewise movement of the jaws and then swallowed, passing to the true stomach. There is probably no more perfect picture of utter contentment, than a herd of cows chewing their cuds in the shade, or standing knee-deep in the cool stream on a summer’s day. The cattle in a herd when grazing, keep abreast and move along, heads in the same direction.

Connected with the grazing habit, is that of the hiding of the new-born calf by its mother; the wobbly calf is ill-fitted so the mother hides it, and there it stays.

![A pet Holstein.](image)
elements of beauty which artists have recognized, especially those of the Dutch school. The ancients also admired bovine eyes, and called their most beautiful goddess the ox-eyed Juno.

The cow's ears can be turned in any direction, and her sense of hearing is keen; so is her sense of smell, aided by the moist, sensitive skin of the nose; she always sniffs danger and also thus tests her food. Although a cow if well kept has a sleek coat, when she is allowed to run out of doors during the winter, her hair grows long and shaggy as a protection. The cow walks on two toes, or as we say has a split hoof. She has two lesser toes above and behind the hoofs which we call dew-claws. The part of her leg which seems at first glance to be her knee, is really her wrist or ankle. Although short-legged, the cow is a good runner, as those who have chased her can bear witness. She can walk, gallop and has a pacing trot; she is a remarkably jumper, often taking a fence like a deer; she also has marvelous powers as a swimmer, a case being on record where a cow swam five miles. But a cow would be illy equipped for comfort if it were not for her peculiar tail, which is made after the most approved pattern of fly-brushes, and is thus used. Woe betide the fly she hits with it, if the blow is as efficient as that which she incidentally bestows on the head of the milker. It is to get rid of flies, that the cattle, and especially the buffaloes, wallow in the mud, and thus coat themselves with a fly-proof armor.

There is a fairly extensive range of emotions expressed in cattle language, from the sullen bellow of the angry animal to the lowing which is the call of the herd, and the mooing which is meant for the calf; and there are many other bellowings and mutterings which we can partially understand.

Every herd of cows has its leader, which has won the position by fair fight. Add a new cow to the herd, and there is at once a trial of strength, to adjust her to her proper place; and in a herd of cows, the leader leads; she goes first and no one may say her nay. In fact, each member of the herd has her place in it; and that is why it is so easy to teach cows each to take her own stanchion in the stable. In a herd of forty cows which I knew, each cow took her stanchion, no matter in what order she happened to enter the stable.

A cow at play is a funny sight; her tail is lifted aloft like a pennant and she kicks as lightly as if she were made of rubber. She is also a sure-footed beast, as anyone can attest who has seen her running down the rocky mountain sides of the Alps, at a headlong pace and never making a mistake. In lying down, the cow first kneels with the front legs, or rather drops on her wrists, and then the hind quarters go down, and then the front follow. She does not lie flat on her side when resting, like the horse when at ease, but with her legs partially under her. In getting up, she rests upon her wrists and then lifts the hind quarters.

The Usefulness of Cattle

When man emerged from the savage state, his first step toward civilization was domesticating wild animals and training them for his own use. During the nomad stage, when tribes wandered over the face of the earth, they took their cattle along. From the first, these animals have been used in three capacities: First, for carrying burdens and as draught
animals; second, as meat; third, as givers of milk. They were also used in the earlier ages as sacrifices to the various deities, and in Egypt, some were held as sacred.

As beasts of burden and draft animals, oxen are still used in many parts of the United States. For logging, especially in pioneer days, oxen were far more valuable than horses. They are patient and will pull a few inches at a time, if necessary, a tedious work which the nervous horse refuses to endure. Cows too, have been used as draft animals, and are so used in China today, where they do most of the plowing; in these oriental countries milk is not consumed to any extent, so the cow is kept for the work she can do. In ancient times in the East, white oxen formed a part of royal processions.

Because of two main uses of cattle by civilized man, he has bred them in two directions; one for producing beef, and one for milk. The beef cattle are chiefly Aberdeen-Angus, Galloway, Short-horn or Durham, and Hereford; the dairy breeds are the Jersey, Guernsey, Ayrshire, Holstein-Frisian and Brown Swiss. The beef animal is, in cross-section, approximately like a brick set sidewise. It should be big and full across the loins and back, the shoulders and hips covered heavily with flesh, the legs stout, the neck thick and short, and the face short; the line of the back is straight, and the stomach line parallel with it. Very different is the appearance of the milch cow. Her body is oval, instead of being approximately square in cross-section. The outline of her back is not straight,
but sags in front of the hips, which are prominent and bony. The shoulders have little flesh on them; and if looked at from above, her body is wedge-shaped, widening from shoulders backward. The stomach line is not parallel with the back bone, but slants downward from the shoulder to the udder. The following are the points that indicate a good milch cow: Head high between the eyes, showing large air passages and indicating strong lungs. Eyes clear, large and placid, indicating good disposition. Mouth large, with a muscular lower jaw, showing ability to chew efficiently and rapidly. Neck, thin and fine, showing veins through the skin. Chest deep and wide, showing plenty of room for heart and lungs. Abdomen, large but well supported, and increasing in size toward the rear. Ribs, well spread, not meeting the spine like the peak of a roof, but the spine must be prominent, revealing to the touch the separate vertebrae. Hips, much broader than the shoulders. Udder, large, the four quarters of equal size, and not fat; the "milk veins" which carry the blood from the udder should be large and crooked, passing into the abdomen through large openings. Skin, soft, pliable and covered with fine, oily hair. She should have good digestion and great powers of assimilation. The milch cow is a milk-making machine, and the more fuel (food) she can use, the greater her production.

The physiological habits of the beef and milch cattle have been changed as much as their structure. The food given to the beef cow goes to make flesh; while that given to the milch cow goes to make milk, however abundant her food. Of course, there are all grades between the beef and the milch types, for many farmers use dual herds for both. However, if a farmer is producing milk it pays him well to get the best possible machine to make it, and that is always a cow of the right type.

A Geography Lesson

All the best breeds of cattle have been evolved in the British Isles and in Europe north of Italy and west of Russia. All our domesticated cattle were developed from wild cattle of Europe and Asia. The cattle which roam in our rapidly narrowing grazing lands of the far West are European cattle. America had no wild cattle except the bison. In geography supplementary readers, read about Scotland, England, the Channel Islands, the Netherlands, France and Switzerland and the different kinds of cattle developed in these countries; for example, "A Holland Dairy," in Northern Europe, Ginn & Co.

How to Produce Good Milk

There are three main ingredients of milk—fat, curd and ash. The fat is for the purpose of supplying the animal with fat and we make it into butter; the curd supplies muscle, or the lean meat of the animal, and is the main ingredient of cheese, although cheese to be good should contain a full amount of butter fat; the ash which may be seen as residue when milk is evaporated, builds up the bone of the animal. The best butter cows are those which give a larger per cent. of fat and a small per cent. of curd, like the Jerseys; the best cheese cows are those which give a fair per cent. of fat and a larger yield of curd, like the Ayrshire and Holstein.
A cow for producing cheese, is not profitable, unless she gives seven thousand pounds of milk per year; a butter cow, a Jersey for instance, should produce five thousand pounds of milk per year to be really profitable.

The stable where milch cows are kept should be thoroughly cleaned before each milking, and should be swept each day; the cows' udders should be brushed, and the milkers should wear clean aprons and should wash their hands before milking. Milk should never be strained in the barn, but in some place where the air is fresh. If milk is perfectly clean, it will keep sweet much longer; sterilized milk put in bottles will keep sweet for weeks and even months. Loud talking should not be permitted in the stables while the cows are being milked, and each cow should be milked by the same person for the entire season.

The perfect milch type.

Milk to be legally sold in New York State must possess three per cent. of butter fat. For upper grades or first year work in the high school, there could not be a more profitable exercise than teaching the pupils the use of the Babcock milk tester.

The Care of the Milch Cow

The importance cannot be over-estimated of teaching the pupils in rural districts, the proper care of milch cattle for the production of milk. The milch cow is a perfect machine, and should be regarded as such in producing milk. First, she should have plenty of food of the right kind, that is, a well-balanced ration. Second, she should have a warm, clean stable and be supplied with plenty of good, fresh air. A cold stable makes it necessary to provide much more food for the cow; a case on record shows that when a barn was opened up in cold weather for necessary repairing, the amount of milk from the cows stabled in it, decreased ten per cent. in twenty-four hours. There should be a protected place for
drinking, if the cattle must be turned out of the barn for water in winter; it is far better to have the water piped into the barn, although the herd should be given a few hours each day in the open air. A dog should never be used for driving cows. To be profitable, a cow should give milk ten months of the year at least. Calves should be dehorned when they are a few days old by putting caustic potash on the budding horns, thus obviating the danger of damaging the cow by dehorning.

In a properly run dairy, a pair of scales stands near the can for receiving the milk; and as the milk from each cow is brought in, it is weighed and the amount set down opposite the cow's name on a "milk sheet," that is tacked on the wall, near by. At the end of each week, the figures on the milk sheet are added, and the farmer knows just how much milk each cow is giving him, and whether there are any in the herd which are not paying their board.

References—Elements of Agriculture, Warren; Agriculture for Beginners, Burkett, Stevens and Hill, p. 216; First Principles of Agriculture, Vorhees, p. 117; Elements of Agriculture, Sever, p. 57; Elements of Agriculture, Shepperd, chapters 15 and 22; First Principles of Agriculture, Goff and Maine, p. 154; Agriculture Through the Laboratory, School and Garden, Jackson and Dougherty, chapter 8; The Dairy Herd, Farmers' Bulletin No. 55, U. S. Dept. of Agr.; Care of Milk on the Farm, Farmers' Bulletin No. 63, U. S. Dept. of Agr.

LESSON LXVIII

The Cow

Leading thought—Certain characteristics which enable the cow to live successfully as a wild animal, have rendered her of great use to us as a domestic animal.

Method—Begin the lesson with leading the pupils to understand the peculiar adaptation of cattle for success, as wild animals. This will have to be done largely by reading and asking for oral or written work on the following topics: "The Aurochs," "Wild Cattle of the Scottish Highlands," "The Buffaloes of the Orient," "The American Bison," "The Cow-boys of the West and their Work with their Herds," "The Breeds of Beef Cattle, Where they Came From, and Where Developed," "The Breeds of Milch Cattle, their Origin and Names." The following questions may be given out a few at a time and answered as the pupils have opportunity for observation.

Observations—1. What are the characteristics of a fine cow? Describe her horns, ears, eyes, nose and mouth. Do you think she can hear well? What is the attitude of her ears when she is listening? Do you think she has a keen sense of smell? Is her nose moist? Is her hair long or short? Smooth or rough?

2. The cow walks on two toes. Can you see any other toes which she does not walk on? Why is the cow's foot better adapted than that of the horse, to walk in mud and marshes? What do we call the two hind toes which she does not walk on? Can you point out on the cow's leg those parts which correspond with our elbow, wrist, knee and ankle? Is the cow a good runner? Is she a good jumper? Can she swim?
3. For what use was the cow's tail evidently intended? How do the wild buffalos and bison get rid of attacks of flies?
4. How much of cattle language do you understand? How does the cow express pleasure? Lonesomeness? Anger? How does the bull express anger? What does the calf express with the voice?
5. Is there always a leader in a herd of cows? Do certain cows of the herd always go first and others last? Do the cows readily learn to take each her own place in the stable? How is leadership of the herd attained? Describe cattle at play.
6. At what time of day do cattle feed in the pasture? When and where do they chew the cud? Do they stand or lie to do this? Describe how a cow lies down and gets up.
7. How do wild cattle defend themselves from wolves? From bears or other solitary animals?
8. For what purposes were cattle first domesticated? For how many purposes do we rear cattle today?
9. Name and give brief descriptions of the different breeds of cattle with which you are familiar. Which of these are beef and which milch types?
10. What are the distinguishing points of a good milch cow? Of a good beef animal? What does the food do for each of these? Which part of the United States produces most beef cattle? Which the most milch cattle?
11. What do we mean by a balanced ration? Do you know how to compute one? What is the advantage of feeding cattle a balanced ration?
12. How many pounds of milk should a dairy cow produce in a year to be profitable if the product is cheese? If the product is butter? Why this discrepancy? What must be the per cent. of butter fat in milk to make it legally salable in your state? How many months of the year should a good cow give milk?
13. Why should a cow be milked always by the same person? Does the milker always sit on the same side? Why should loud talking and other noise at milking time be avoided? Should a dog be used in driving dairy cows? Why?
14. Why is a cool draughty barn an expensive place in which to keep cattle? Why is a barn not well-ventilated, a danger?
15. Why and where is the dehorning of cattle practiced? When and how should a calf be dehorned?
16. Why should milk not be strained in the barn? Why is it profitable for the dairy farmer to keep his stable clean and to be cleanly in the care of milk? How does the food of cows affect the flavor of the milk? Why should a farmer keep a record of the number of pounds of milk which each cow in his dairy gives each day?
17. For what are oxen used? Wherein are they superior to horses as riding animals? Do you know of any place where oxen are used as riding animals?
18. How many industries are dependent upon cattle?
19. Give oral or written exercises on the following themes: "How the Best Butter is Made;" "The Use of Bacteria in Butter;" "How Dairy Cheese is Made;" "How Fancy Cheeses are Made."
"I wander through the underbresh,
Where pig tracks pointin' to'rs the crick,
Is picked and printed in the fresh
Black bottom-lands, like wimmen prick
Their pie-crust with a fork."—RILEY.

Y a forest law of William the First of England in the eleventh century, it was ordained that any that were found guilty of killing the stag or the roebuck or the wild boar, should have their eyes put out. This shows that the hunting of the wild boar in England was considered a sport of gentlemen in an age when nothing was considered sport unless it was dangerous. The wild hog of Europe is the ancestor of our common domesticated breeds; although independent of these, the Chinese domesticated their own wild species, even before the dawn of history.

The wild hog likes damp situations where it may wallow in the water and mud; but it also likes to have, close by, woods, thicket or underbrush, to which it can retire for rest and also when in danger. The stiff, bristling hairs which cover its thick skin, are a great protection when it is pushing through thorny thicket. When excited or angry, these bristles rise and add to the fury of its appearance. Even in our own country, the wild hogs of the South whose ancestors escaped from domestication, have reverted to their original savagery, and are dangerous when infuriated. The only recorded instance when our great national hunter, Theodore Roosevelt, was forced ignominiously to climb a tree, was after he
had emptied his rifle into a herd of "javelins," as the wild pigs of Texas are called; the javelins are the peccaries, which are the American representatives of the wild hog.

That the hog has become synonymous with filth is the result of the influence of man upon this animal, for of all animals, the pig is naturally the neatest, keeping its bed clean, often in the most discouraging and ill-kept pens. The pig is sparsely clothed with bristles and hairs, which yield it no protection from the attacks of flies and other insects. Thus it is the pig, in order to rid itself of these pests, has learned to wallow in the mud. However, this is in the nature of a mud bath, and is for the purpose of keeping the body free from vermin. The wild hogs of India make for themselves grass huts, thatched above and with doors at the sides, which shows that the pig, if allowed to care for itself, understands well the art of nest-building.

One of the most interesting things about a pig, is its nose; this is a fleshy disc with nostrils in it and is a most sensitive organ of feeling; it can select grain from chaff, and yet is so strong that it can root up the ground in search for food. "Root" is a pig word, and was evidently coined to describe the act of the pig when digging for roots; the pig's nose is almost as remarkable as the elephant's trunk, and the pig's sense of smell is very keen; it will follow a track almost as well as a dog. There are more instances than one of a pig being trained as a pointer for hunting birds, and showing a keener sense of smell, and keener intelligence in this capacity, than do dogs. French pigs are taught to hunt for truffles, which are fungi growing on tree roots, a long way below the surface of the ground; the pig detects their presence through the sense of smell.

The pig has a full set of teeth, having six incisors, two canines and seven grinding teeth on each jaw; although in some cases there are only four incisors on the upper jaw. A strange thing about a pig's teeth, is the action of the upper canines, or tushes, which curve upward instead of downward; the lower canines grind up against them, and are thus sharpened. The females have no such development of upper tushes as do the males; these tushes, especially the upper ones, are used as weapons; with them, the wild boar slashes out and upward, inflicting terrible wounds, often disabling horses and killing men. Professor H. F. Button describes the fighting of hogs thus: "To oppose the terrible weapons of his rival, the boar has a shield of skin over his neck and shoulders, which may become two inches thick, and so hard as to defy a knife. When two of these animals fight, each tries to keep the tushes of his opponent against the shield, and to get his own tushes under the belly or flank of the other. Thus, each goes sidewise or in circles, which has given rise to the expression, 'to go sidewise like a hog to war.'"

When, as a small girl, I essayed the difficult task of working buttonholes, I was told if I did not set my stitches more closely together, my buttonhole would look like a pig's eye, a remark which made me observant of that organ ever after. But though the pig's eyes are small, they certainly gleam with intelligence, and they take in all that is going on, which may in any way affect his pigship.

The pig is the most intelligent of all the farm animals, if it is only given a chance; it has excellent memory and can be taught tricks readily; it is affectionate and will follow its master around like a dog. Anyone who has seen a trained pig at a show picking out cards and counting, must
grant that it has brains, although we stuff it so with fattening food, that it does not have a chance to use its brain, except now and then when it breaks out of the sty and we try to drive it back. Under these circumstances, we grant the pig all the sagacity usually imputed to the one who once possessed swine and drove them into the sea. Hunters of wild hogs proclaim that they are full of strategy and cunning, and are exceedingly fierce. We pay tribute to the pig's cleverness when free to outwit us, when we say of other uncertain undertakings, that they are like "buying a pig in a poke."

The head of the wild hog is wedge-shaped with pointed snout, and this form enables the animal to push into the thick underbrush along the river banks, whenever it is attacked. But civilization has changed this bold profile of the head, so that now in many breeds, there is a hollow between the snout and eyes, giving the form which we call "dished." Some breeds have sharp, forward-opening ears, while others have ears that lop. The wild pig of Europe and Asia has large, open ears extending out wide and alert on each side of the head.

The covering of the pig is a thick skin beset with bristling hairs; when the hog is excited, the bristles rise and add to the fury of its appearance. The bristles aid in protecting the animal when it is pushing through thorny thickets. The pig's querry tail is merely an ornament, although the tail of the wart hog of Africa, if pictures may be relied upon, might be used in a limited fashion as a fly-brush.

When the pig is allowed to roam in the woods, it lives on roots, nuts, and especially acorns and beech nuts; in the autumn it becomes very fat through feeding upon the latter. The mast-fed bacon of the semi-wild hogs of the Southern States is considered the best of all. But almost anything animal or vegetable, that comes in its way, is eaten by the hog, and it has been long noted that the hog has done good service on our frontier as a killer of rattlesnakes. The pig is well fitted for locomotion on either wet or dry soil, for the two large hoofed toes enable it to walk well on dry ground and the two hind toes, smaller and higher up, help to sustain it on marshy soil. Although the pig's legs are short, it is a swift runner unless it is too fat. The razor-backs of the South are noted for their fleetness.

We understand somewhat the pig's language; there is the constant grunting, which is a sound that keeps the pig herd together. We understand perfectly the complaining squeal of hunger, the satisfied grunt signifying enjoyment of food, the squeal of terror when seized, and the nasal growl when fighting. But there is much more to the pig's conversation than this; I know a certain lady, who is a lover of animals, and who once undertook to talk pig language as best she could imitate it, to two of
her sows when they were engaged in eating. They stopped eating, looked at each other a moment and forthwith began fighting, each evidently attributing the lady’s remark to the other, and obviously it was of an uncomplimentary character.

The pig’s ability to take on fat was evidently a provision, in the wild state, for storing up fat from mast that should help sustain the animal during the hardships of winter; and this character is what makes swine useful for our own food. Pigs, to do best, should be allowed to have pasture and plenty of fresh green food. Their troughs should be kept clean and they should have access to ashes, and above all, they should have plenty of pure water; and as the pig does not perspire freely, access to water where it can take its natural mud-baths helps to keep the body cool and the pig healthy in hot weather.

The breeds of hogs most common in America are the Berkshires, which are black with white markings, and have ears extending erect; the Poland Chinas, which are black and white with drooping ears; the Duroc-Jersey, which are red or chestnut with drooping ears; the Yorkshire and Cheshire, which are white with erect ears, while the Cheshire White is white with drooping ears. The Poland China and Duroc-Jersey are both pure American breeds.

References—Elementary Agriculture, Warren; Our Domestic Animals, Burkett; The Country Reader, Buchanan; Lives of Animals, Ingersoll; Types and Breeds of Farm Animals, Plumb; and the bulletins of the U. S. Department of Agriculture.

LESSON LXIX
THE PIG

Leading thought—The pig is something more than a source of pork. It is a sagacious animal and naturally cleanly in its habits when not made prisoner by man.

Method—The questions in this lesson may be given to the pupils a few at a time, and those who have access to farms or other places where pigs are kept may make the observations and in giving them to the class they should be discussed. Supplementary reading should be given the pupils, which may inform them as to the habits and peculiarities of the wild hogs. Theodore Roosevelt’s experience in hunting the wart-hog in Africa will prove interesting reading.

Observations—1. How does the pig’s nose differ from that
of other animals? What is it used for besides for smelling? Do you think the pig's sense of smell is very keen? Why do pigs root?

2. Describe the pig's teeth. For what are they fitted? What are the tushes for? Which way do the upper tushes turn? How do wild hogs use their tushes?

3. Do you think that a pig's eyes look intelligent? What color are they? Do you think the pig can see well?

4. Is the pig's head straight in front or is it dished? Is this dished appearance ever found in wild hogs? Do the ears stand out straight or are they lopped? What advantage is the wedge-shaped head to the wild hogs?

5. How is the pig covered? Do you think the hair is thick enough to keep off flies? Why does the pig wallow in the mud? Is it because the animal is dirty by nature or because it is trying to keep clean? Do the hog's bristles stand up if it is angry?

6. If the pig could have its natural food what would it be and where would it be found? Why and on what should pigs be pastured? What do pigs find in the forest to eat? What kind of bacon is considered the best?

7. On how many toes does the pig walk? Are there other toes on which it does not walk? If wading in the mud are the two hind toes of use? Do wild pigs run rapidly? Do tame pigs run rapidly if they are not too fat? Do you think the pig can swim? Do you think that the pig's tail is of any use or merely an ornament?

8. What cries and noises do the pigs make which we can understand?

9. How do hogs fight each other? When the boars fight, how do they attack or ward off the enemy? Where do we get the expression going "sidewise like a hog to war?"

10. How many breeds of pigs do you know? Describe them.

11. What instances have you heard that show the hog's intelligence?

12. Give an oral or written English exercise on one of the following topics: "The antiquity of swine; how they were regarded by the ancient Egyptians, Greeks and Romans;" (see encyclopedia). "The story of hunting wild hogs in India; "The razor-back hogs of the South;" "The wart-hog of Africa."

"The nice little pig with a querly tail,
All soft as satin and pinky pale
Is a very different thing by far
Than the lumps of iniquity, big pigs are."

—Nonsense Rhyme.
INSECTS are among the most interesting and available of all living creatures for nature-study. The lives of many of them afford more interesting stories than are found in fairy lore; many of them show exquisite colors and, more than all, they are small and are, therefore, easily confined for observation.

While the young pupils should not be drilled in insect anatomy, as if they were embryo zoologists, yet it is necessary for the teacher, who would teach intelligently, to know something of the life stories, habits and structure of the common insects. Generally speaking, all insects develop from eggs. To most of us the word egg brings before us the picture of the egg of the hen or of some other bird. But insect eggs are often far more beautiful than those of any bird; they are of widely differing forms, and are often exquisitely colored and the shells may be ornately ribbed and pitted, sometimes adorned with spines, and are as beautiful to look at through a microscope as the most artistic piece of mosaic.

From the eggs, larvæ (sing. larva) issue. These larvæ may be caterpillars, or the creatures commonly called worms, or may be maggots or grubs. The larval stage is always devoted to feeding and to growth. It is the chief business of the larva to eat diligently and to attain maturity as soon as possible; for often the length of the larval period depends more upon food than upon lapse of time. All insects have their skeletons on the outside of the body; that is, the outer covering of the body is chitinous, and the soft and inner parts are attached to it and supported
This skin is so firm that it cannot stretch to accommodate the increasing size of the growing insect, thus from time to time it is shed. But before this is done, a new skin is formed beneath the old one. After the old skin bursts open and the insect crawls forth, the new skin is sufficiently soft and elastic to allow for the increase in the size of the insect. Soon, the new skin becomes hardened like the old one, and after a time, is shed. This shedding of the skin is called molting. Some insects shed their skins only four or five times during the period of attaining their growth, while other species may molt twenty times or more.

After the larva has attained its full growth, it changes its skin and its form, and becomes a pupa. The pupa stage is ordinarily one of inaction, except that very wonderful changes take place within the body itself. Usually the pupa has no power of moving around, but in many cases it can squirm somewhat, if disturbed. The pupa of the mosquito is active and is an exception to the rule. The pupa is usually an oblong object and seems to be without head, feet or wings; but if it is examined closely, especially in the case of butterflies and moths, the antennae, wings and legs may be seen, folded down beneath the pupa skin.

Many larvae, especially those of moths, weave about themselves a covering of silk which serves to protect them from their enemies and the weather, during the helpless pupa period. This silken covering is called a cocoon. The larvae of butterflies do not make a silken cocoon, but the pupa is suspended to some object by a silken knob, and in some cases by a halter of silk, and remains entirely naked. The pupa of a butterfly is called a chrysalis. Care should be taken to have the children use the words—pupa, chrysalis and cocoon—understandingly.
After a period varying from days to months, depending upon the species of insect and the climate, the pupa skin bursts open and from it emerges the adult insect, often equipped with large and beautiful wings and always provided with six legs and a far more complex structure of body than characterized it as a larva. The insect never grows after it reaches this adult stage and, therefore, never molts. Some people seem to believe that a small fly will grow into a large fly, and a small beetle into a large beetle; but after an insect attains its

A butterfly chrysalis.

A luna moth.

The delicate, exquisite green of the luna's wings is set off by the rose-purple, velvet border of the front wings, and the white fur on the body and inner edge of the hind wings. Little wonder that it has been called the "Empress of the night". The long swallow tail of the hind wings give the moth a most graceful shape, at the same time probably afford it protection from observation. During the daytime the moth hangs wings down beneath the green leaves, and these long projections of the hind wings folded together resemble a petiole, making the insect look very much like a large leaf.
perfect wings, it does not grow larger. Many adult insects take very little food, although some continue to eat in order to support life. The adult stage is ordinarily shorter than the larval stage; it seems a part of nature's economic plan that the grown-up insects should live only long enough to lay eggs, and thus secure the continuation of the species. Insects having the four distinct stages in their growth, egg, larva, pupa and adult, are said to undergo complete metamorphosis.

But not all insects pass through an inactive pupa stage. With some insects, like the grasshoppers, the young, as soon as they are hatched, resemble the adult forms in appearance. These insects, like the larvae, shed their skins to accommodate their growth, but they continue to feed and move about actively until the final molt when the perfect insect appears. Such insects are said to have incomplete metamorphosis, which simply means that the form of the body of the adult insect is not greatly different from that of the young; the dragon-flies, crickets, grasshoppers and bugs are of this type. The young of insects with an incomplete metamorphosis are called nymphs instead of larvae.

A young grasshopper, enlarged. The line shows its actual length.

The adult of the same grasshopper, natural size.

Summary of the Metamorphoses of Insects

Kinds of Metamorphosis

I. Complete metamorphosis

 Egg.
 Larva.
 Pupa. (The pupa is sometimes enclosed in a cocoon.)
 Adult or winged insect.

II. Incomplete metamorphosis

 Egg.
 Nymph (several stages).
 Adult, or imago.

Insect brownies; tree-hoppers as seen through a lens.
The Structure of Insects

The insect body is made up of ring-like segments which are grown together. These segments are divided into groups according to their use and the organs which they bear. Thus the segments of an insect’s body are grouped into three regions, the head, the thorax and the abdomen. The head bears the eyes, the antennae, and the mouth-parts. On each side of the head of the adult insect may be seen the compound eyes; these are so called, because they are made up of many small eyes set together, much like the cells of the honeycomb. These compound eyes are not found in larvae. In addition to the compound eyes, many adult insects possess simple eyes; these are placed between the compound eyes and are usually three in number. Often they cannot be seen without the aid of a lens.

The antennae or feelers are composed of many segments and are inserted in front of the eyes or between them. They vary greatly in form. In some insects they are mere threads; in others, like the silk-worm moths, they are large, feather-like organs.

The mouth-parts of insects vary greatly in structure and in form, being adapted to the life of the insect species to which they minister. Some insects have jaws fitted for seizing their prey, others for chewing.
leaves, others have a sucking tube for getting the juices from plants or the blood from animals, and others long delicate tubes for sipping the nectar from flowers.

In the biting insects, the mouth-parts consist of an upper lip, the labrum, and under lip, the labium, and two pairs of jaws between them. The upper pair of jaws is called the mandibles and the lower pair, the maxillae (sing. maxilla). There may be also within the mouth, one or two tongue-like organs. Upon the maxillae and upon the lower lip there may also be feelers which are called palpi (sing. palpus). The jaws of insects, when working, do not move up and down, as do ours, but move sidewise like shears. In many of the insects, the children are able to observe the mandibles and the palpi without the aid of a lens.

The thorax is the middle region of the insect body. It is composed of three of the body segments more or less firmly joined together. The segment next the head is called the prothorax, the middle one, the mesothorax, and the hind one, the metathorax. Each of these segments bears a pair of legs and, in the winged insects, the second and third segments bear the wings. Each leg consists of two small segments next to the body, next to them a longer segment, called the femur, beyond this a segment called the tibia, and beyond this the tarsus or foot. The tarsus is made up of a number of segments, varying from one to six, the most common number being five. The last segment of the tarsus usually bears one or two claws.

While we have little to do with the internal anatomy of insects in elementary nature-study, the children should be taught something of the way that insects breathe. The child naturally believes that the insect, like himself, breathes through the mouth, while as a matter of fact, insects breathe through their sides. If we examine almost any insect carefully, we can find along the sides of the body a series of openings. These are called the spiracles, and
through them the air passes into the insect's body. The number of spiracles varies greatly in different insects. There is, however, never more than one pair on a single segment of the body, and they do not occur on the head. The spiracles, or breathing pores, lead into a system of air tubes which are called tracheae (tra'-ke-ee), which permeate the insect's body and thus carry the air to every smallest part of its anatomy. The blood of the insect bathes these thin-walled air tubes and thus becomes purified, just as our blood becomes purified by bathing the air tubes of our lungs. Thus, although the insects do not have localized breathing organs, like our lungs, they have, if the expression may be permitted, lungs in every part of their little bodies.

The sphinx caterpillar, with the parts of the external anatomy named.

Summary of Structure of an Insect

<table>
<thead>
<tr>
<th>Head</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antennæ.</td>
<td>Labrum, or upper lip.</td>
</tr>
<tr>
<td>Compound eyes</td>
<td>Mandibles, or upper jaws.</td>
</tr>
<tr>
<td>Simple eyes or ocelli.</td>
<td>Maxillæ, or lower jaws, and maxillary palpi.</td>
</tr>
<tr>
<td>Mouth-parts</td>
<td>Labium and labial palpi.</td>
</tr>
<tr>
<td>Prothorax and first pair of legs.</td>
<td>second pair of legs.</td>
</tr>
<tr>
<td>Mesothorax and</td>
<td>first pair of wings.</td>
</tr>
<tr>
<td>Metathorax and</td>
<td>third pair of legs.</td>
</tr>
<tr>
<td></td>
<td>second pair of wings.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thorax</th>
<th>Wing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>veins.</td>
</tr>
<tr>
<td></td>
<td>cells.</td>
</tr>
<tr>
<td></td>
<td>Two small segments called coxa and trochanter.</td>
</tr>
<tr>
<td></td>
<td>Femur.</td>
</tr>
<tr>
<td></td>
<td>Tibia.</td>
</tr>
<tr>
<td></td>
<td>Tarsus and claws.</td>
</tr>
<tr>
<td></td>
<td>ears (in locusts only).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abdomen</th>
<th>The abdomen bears</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>spiracles.</td>
</tr>
<tr>
<td></td>
<td>ovipositor.</td>
</tr>
</tbody>
</table>

References.—Manual for the Study of Insects and Insect Life, Comstock.
THE BLACK SWALLOW-TAIL BUTTERFLY

Teacher's Story

This graceful butterfly is a very good friend to the flowers, being a most efficient pollen carrier. It haunts the gardens and sips nectar from all the blossom cups held out for its refreshment; and it is found throughout almost all parts of the United States. The grace of its appearance is much enhanced by the "swallow-tails," two projections from the hind margins of the hind wings. The wings are velvety black with three rows of yellow spots across them, the outer row being little crescents set in the margin of the wing; and each triplet of yellow spots is in the same cell of the wing between the same two veins. The hind wings are more elaborate, for between the two inside rows of yellow spots, there are exquisite metallic blue splashes, more vivid and more sharply outlined toward the inside of the wing and shading off to black at the outside. And just above the inner angle of the hind wing is an orange eye-spot with a black center. On the lower surface of the wings, most of the yellow spots are replaced with orange.

The mother butterfly is larger than her mate and has more blue on her wings, while he has the yellow markings of the hind wings much more conspicuous. She lays her egg, just the color of a drop of honey, on the under surface of the leaf of the food plant. After about ten days there hatches from this egg a spiny little fellow, black and angular, with a saddle-shaped, whitish blotch in the middle of its back. But it would take an elfin rider to sit in this warty, spiny saddle. The caterpillar has six spines on each segment, making six rows of spines, the whole length of the body; the spines on the black portions are black and those on the saddle white, but they all have orange-colored bases.

When little, spiny saddle-back gets ready to change its skin to one more commodious for its increased size, it seeks some convenient spot on the leaf or stem and spins a little silken carpet from the silk gland opening in its under lip; on this carpet it rests quietly for some time, and then the old tight skin splits down the back, the head portion coming off separately. Swelling out to fill its new skin to the utmost, it leaves its cast-off clothes clinging to the silken carpet and marches back to its supper.

But after one of these changes of skin it becomes a very different looking caterpillar, for now it is as smooth as it was formerly spiny; it is now brilliant caraway green, ornamented with roundwise stripes of velvety black; and set in the front margin of each of these stripes are six yellow spots. In shape, the caterpillar is larger toward the head; its true feet have little, sharp claws and look very different from the
four pairs of prolegs and the hind prop-leg, all of which enable him to hold fast to the stem or the leaf; these fat legs are green, each ornamented with a black, velvety polka-dot.

When we were children we spent hours poking these interesting creatures with straws to see them push forth their brilliant orange horns. We knew this was an act of resentment, but we did not realize that from these horns was exhaled the nauseating odor of caraway which greeted our nostrils. We incidentally discovered that they did not waste this odor upon each other, for once we saw two of the full-grown caterpillars meet on a caraway stem. Neither seemed to know that the other was there until they touched; then both drew back the head and butted each other like billy-goats, Whack! whack! Then both turned laboriously around and hurried off in a panic.

The scent organs of these caterpillars are really little Y-shaped pockets in the segment back of the head, pockets full of this peculiar caterpillar perfume. Under the stimulus of attack, the pocket is turned wrong side out and pushed far out making the "horns," and at the same time throwing the strong odor upon the air. This spoils the flavor of these caterpillars as bird food, so they live on in serene peace, never hiding under the leaves but trusting, like the skunk, to a peculiar power of repelling the enemy.

We must admire this caterpillar for the methodical way in which it eats the leaf: Beginning near the base, it does not burn its bridges behind it by eating through the midrib, but eats everything down to the midrib; after it arrives at the tip of the leaf it finishes midrib and all on its return journey, doing a clean job, and finishing everything as it moves along. (See Moths and Butterflies, Dickerson, p. 42.)

When the caterpillar has completed its growth, it is two inches long; it then seeks some sheltered spot, the lower edge of a clapboard or fence rail being a favorite place; it there spins a button of silk which it grasps firmly with its hind prop-leg, and then, with head up, or perhaps horizontal, it spins a strong loop or halter of silk, fastening each end of it firmly to the object on which it rests. It thrusts its head through, so that the halter acts as a sling holding the insect from falling. There it sheds its last caterpillar skin, which shrinks back around the button, revealing the chrysalis which is angular with ear-like projections in front. Then comes the critical moment, for the chrysalis lets go of the button with its caterpillar feet, and trusting to the sling for
support, pushes off the shrunken skin just shed and inserts the hooks, with which it is furnished, firmly in the button of silk. Sometimes during this process, the chrysalis loses its hold entirely and falls to the ground, which is a fatal disaster. The chrysalis is yellowish brown and usually looks very much like the object to which it is attached, and is thus undoubtedly protected from sight of possible enemies. Then some day it breaks open, and from it issues a crumpled mass of very damp insect velvet, which soon expands into a beautiful butterfly.

References.—Everyday Butterflies, Scudder; Moths and Butterflies, Dickerson; How to Know the Butterflies, Comstock; Moths and Butterflies, Ballard.

LESSON LXX

THE BLACK SWALLOW-TAIL BUTTERFLY

Leading thought—The caterpillars of the swallow-tail butterflies have scent organs near the head which they thrust forth when attacked, thus giving off a disagreeable odor which is nauseating to birds.

Method—In September, bring into the schoolroom and place in the terrarium, or breeding cage, a caraway or parsley plant on which these caterpillars are feeding, giving them fresh food day by day, and allow the pupils to observe them at recess and thus complete the lesson.

The Caterpillar and Chrysalis.

Observations.—1. Touch the caterpillar on the head with a bit of grass. What does it do? What color are the horns? Where do they come from? Are there two separate horns or two branches of one horn? What odor comes from these horns? How does this protect the caterpillar? Does the caterpillar try to hide under the leaves when feeding? Is this evidence that it is not afraid of birds?

2. Describe the caterpillar as follows: What is its shape? Is it larger toward the head or the rear end? What is its ground color? How is it striped? How many black stripes? How many yellow spots in each
black stripe? Are the yellow spots in the middle, or at each edge of the stripe?

3. How do the front three pairs of legs look? How do they compare with the prolegs? How many prop-legs are there? What is the color of the prolegs? How are they marked? Describe the prop-leg. What is its use?

4. Observe the caterpillar eating a leaf. How does it manage so as not to waste any?

5. Have you found the egg from which the caterpillar came? What color is it? Where is it laid?

6. How does the front three pairs of legs look? How do they compare with the prolegs? How many prop-legs are there? What is the color of the prolegs? Describe the prop-leg. What is its use?

7. Watch one of these caterpillars shed its skin. How does it prepare for this? How does it spin its carpet? Where does the silk come from? Describe how it acts when shedding its skin?

8. When a caterpillar is full grown, how does it hang itself up to change to a chrysalis? How does it make the silk button? How does it weave the loop or halter? How does it fasten it? When the halter is woven what does the caterpillar do with it? Describe how the last caterpillar skin is shed. How does the insect use its loop or halter while getting free from the molted skin?

9. Describe the chrysalis. What is its general shape? What is its color? Is it easily seen? Can you see where the wings are, within the chrysalis? How is the chrysalis supported?

10. How does the chrysalis look when the butterfly is about to emerge? Where does it break open? How does the butterfly look at first?
1. Why is this butterfly called the black swallow-tail? What is the ground color of the wings? How many rows of yellow spots on the front wings? Are they all the same shape? How are they arranged between each two veins? Describe the hind wings. What colors are on them that are not on the front wings? Describe where this color is placed. Describe the eye-spot on the hind wing. Where is it? How do the markings on the lower side of the wing differ from those above? How does the ground color differ from the upper side?

2. What is the color of the body of the butterfly? Has it any marks? Has it the same number of legs as the Monarch? Describe its antennae. Watch the butterfly getting nectar from the petunia blossom and describe the tongue. Where is the tongue when not in use?

3. How does the butterfly pass the winter? How does the mother butterfly differ in size and in markings from her mate?

"The 'caraway worms' were the ones that revealed to us the mystery of the pupa and butterfly. We saw one climb up the side of a house, and watched it as with many slow, graceful movements of the head, it wove for itself the loop of silk which we called the 'swing' and which held it in place after it changed to a chrysalis. We wondered why such a brilliant caterpillar should change to such a dull-colored object, almost the color of the clapboard against which it hung. Then, one day, we found a damp, crumpled, black butterfly hanging to the empty chrysalis skin, its wings 'all mussed' as we termed it; and we gazed at it pityingly; but even as we gazed, the crumpled wings expanded and then there came to our childish minds a dim realization of the miracle wrought within that little, dingy, empty shell."

—How to Know the Butterflies, Comstock.
The Monarch Butterfly

Teacher's Story

It is a great advantage to an insect to have the bird problem eliminated, and the monarch butterfly enjoys this advantage to the utmost. Its method of flight proclaims it, for it drifts about in a lazy, leisurely manner, its glowing red making it like a gleaming jewel in the air, a very different flight indeed from the zigzag dodging movements of other butterflies. The monarch has an interesting race history. It is a native of tropic America, and has probably learned through some race instinct, that by following its food plant north with the opening season, it gains immunity from special enemies other than birds, which attack it in some stage in its native haunts. Each mother butterfly follows the spring northward as it advances, as far as she finds the milkweed sprouted. There she deposits her eggs, from which hatch individuals which carry on the migration as far to the north as possible. It usually arrives in New York State early in July. As cold weather approaches, the monarchs often gather in large flocks and move back to the South. How they find their way we cannot understand, since there are among them none of the individuals which pressed northward early in the season.

The very brilliant copper-red color of the upper sides of the wings of the monarch is made even more brilliant by the contrasting black markings which outline the veins and border the wings, and also cover the tips of the front wings with a triangular patch; this latter seems to be an especially planned background for showing off the pale orange and white dots set within it. There are white dots set, two pairs in two rows, between each two veins in the black margin of the wings; and the fringe at the edge of the wings shows corresponding white markings. The hind wings and the front portions of the front wings have, on their lower sides, a ground color of pale yellow, which makes the insect less conspicuous when it alights and folds its wings above its back, upper surfaces together.
The black veins, on the lower surface of the hind wings, are outlined with white, and the white spots are much larger than on the upper surface. The body is black, ornamented with a few pairs of white spots above and with many large white dots below. The chief distinguishing characteristic of insects, is the presence of six legs; but in this butterfly, the front legs are so small that they scarcely look like legs.

It is easy to observe the long, coiled tongue of the butterfly. If the act is done gently, the tongue may be uncoiled by lifting it out with a pin.

To see a butterfly feeding upon nectar, is a very interesting process and may be observed in the garden almost any day. I have also observed it indoors, by bringing in petunias and nasturtiums for my imprisoned butterflies, but they are not so likely to eat when in confinement. The antennae are about two-thirds as long as the body and each ends in a long knob; this knob, in some form, is what distinguishes the antennae of the butterflies from those of moths. The male monarch has a black spot upon one of the veins of the hind wing; this is a perfume pocket and is filled with what are called scent scales; these are scales of peculiar shape which cover the wing at this place and give forth an odor, which we with our coarse sense of smell attracted by this odor. The male monarch may be described to the children, as a dandy carrying a perfume pocket to attract his sweetheart.

It is very interesting to the pupils if they are able to see a bit of the butterfly's wing through a three-fourths objective; the covering of scales, arranged in such perfect rows, is very beautiful and also very wonderful. The children know that they get dust upon their fingers from butterflies' wings, and they should know that each grain of this dust is an exquisite scale with notched edges and a ribbed surface.

The monarch is, for some reason unknown to us, distasteful to birds, and its brilliant colors are an advertisement to all birds of discretion, that here is an insect which tastes most disagreeably and that, therefore, should be left severely
alone. There is another butterfly called the viceroy, which has taken advantage of this immunity from bird attack on the part of the monarch and has imitated its colors in a truly remarkable way, differing from it only in being smaller in size and having a black band across the middle of the hind wing. (See The Ways of the Six Footed, "A Sheep in Wolf's Clothing").

The milkweed caterpillar, which is the young of the monarch butterfly, is a striking object, and when fully grown is about two inches long. The milkweed is a succulent food and the caterpillar may mature in eleven days; it is a gay creature, with ground color of green and cross stripes of yellow and black. On top of the second segment, back of the head, are two long, slender whiplash-like organs, and on the seventh segment of the abdomen is a similar pair. When the caterpillar is frightened, the whiplashes at the front of the body twitch excitedly; when it walks, they move back and forth. Those at the rear of the body are more quiet and not so expressive of caterpillar emotions. These filaments are undoubtedly of use in frightening away the little parasitic flies, that lay their eggs upon the backs of caterpillars; these eggs hatch into little grubs that feed upon the internal fatty portions of the caterpillar and bring about its death through weakness. I remember well when I was a child, the creepy feeling with which I beheld these black and yellow-ringed caterpillars waving and lashing their whips back and forth after I had disturbed them; if the ichneumon flies were as frightened as I, the caterpillars were surely safe.

The caterpillar will feed upon no plant except milkweed; it feeds both day and night, with intervals of rest, and when resting, hides beneath the leaf. Its striking colors undoubtedly defend it from birds, because it is as distasteful to them as is the butterfly. However, when frightened, these caterpillars fall to the ground where their stripes make them very inconspicuous among the grass and thus perhaps save them from the attack of animals less fastidious than birds. These caterpillars, like all others, grow by shedding the skeleton skin as often as it becomes too tight.

The monarch chrysalis is, I maintain, the most beautiful gem in Nature's jewel casket; it is an oblong jewel of jade, darker at the upper end and shading to the most exquisite whitish green below; outlining this lower paler portion are shining flecks of gold. If we look at these gold flecks with a lens, we cannot but believe that they are bits of polished gold-foil. There
may be other gold dots also, and outlining the apex of the jewel, is a band of gold with a dotted lower edge of jet; and the knob at the top, to which the silk which suspends the chrysalis is fastened, is also jet. The chrysalis changes to a darker blue-green after two days, and black dots appear in the gold garniture. As this chrysalis is usually hung to the under side of a fence rail or overhanging rock, or to a leaf, it is usually surrounded by green vegetation, so that its green color protects it from prying eyes. Yet it is hardly from birds that it hides; perhaps its little gilt buttons are a hint to birds that this jewel is not palatable. As it nears the time for the butterfly to emerge, the chrysalis changes to a duller and darker hue. The butterfly emerges about twelve days after the change to a chrysalis.

References—Every Day Butterflies, Scudder; How to Know the Butterflies, Comstock; Moths and Butterflies, Dickerson; Ways of the Six Footed, Comstock; Moths and Butterflies, Ballard.
LESSON LXXI

THE MONARCH BUTTERFLY

Leading thought—The monarch butterfly migrates northward, every spring and summer, moving up as fast as milkweed appears, so as to give food to its caterpillar; and it has often been noticed migrating back southward in the autumn in large swarms. This insect is distasteful to birds in all its stages. Its chrysalis is one of the most beautiful objects in all nature.

Method—This lesson should be given in September, while yet the caterpillars of the monarch may be found feeding upon milkweed, and while there are yet many specimens of this gorgeous butterfly to be seen. The caterpillars may be brought in, on the food plant, and their habits and performances studied in the schoolroom; but care should be taken not to have the atmosphere too dry.

The Butterfly

Observations—1. How can you tell the monarch butterfly from all others? What part of the wings is red? What portions are black? What portions are white? What are the colors and markings on the lower side of the wings? What is the color of the body and how is it ornamented?

2. Is the flight of the monarch rapid or slow and leisurely? Is it a very showy insect when flying? Are its colors more brilliant in the sunshine when it is flying than at any other time? Why is it not afraid of birds?

3. When the butterfly alights, how does it hold its wings? Do you think it is as conspicuous when its wings are folded as when they are open?

4. Can you see the butterfly's tongue? Describe the antennae. How do they differ from the antennae of moths? How many legs has this butterfly? How does this differ from other insects? Note if you can see any indications of front legs.

5. Is there on the butterfly you are studying a black spot near one of the veins on each hind wing? Do you know what this is? What is it for?

6. Why are the striking colors of this butterfly a great advantage to it? Do you know of any other butterfly which imitates it and thus gains an advantage?

The Monarch Caterpillar

1. Where did you find the Monarch caterpillar? Was it feeding below or above on the leaves? Describe how it eats the milkweed leaf.

2. What are the colors and the markings of the caterpillar? Do you think these make it conspicuous?

3. How many whip-lash shaped filaments do you find on the caterpillar? On which segments are they situated? Do these move when the caterpillar walks or when it is disturbed? Of what use are they to the caterpillar?

4. Do you think this caterpillar would feed upon anything except milkweed? Does it rest, when not feeding, upon the upper or the lower surface of the leaves? Does it feed during the night as well as the day?

5. If disturbed, what does the caterpillar do? When it falls down among the grass how do its cross stripes protect it from observation?

6. Tell all the interesting things which you have seen this caterpillar do.
The Chrysalis

1. When the caterpillar gets ready to change to a chrysalis what does it do? How does it hang up? Describe how it sheds its skin.

2. Describe the chrysalis. What is its color? How and where is it ornamented? Can you see, in the chrysalis, those parts which cover the wings of the future butterfly?

3. To what is the chrysalis attached? Is it in a position where it does not attract attention? How is it attached to the object?

4. After three or four days, how does the chrysalis change in color? Observe, if you can, the butterfly come out from the chrysalis, noting the following points: Where does the chrysalis skin open? How does the butterfly look when it first comes out? How does it act for the first two or three hours? How does the empty chrysalis skin look?

A BUTTERFLY AT SEA

Far out at sea—the sun was high,
While veered the wind and flapped the sail;
We saw a snow-white butterfly
Dancing before the fitful gale
Far out at sea.

The little wanderer, who had lost
His way, of danger nothing knew;
Settled a while upon the mast;
Then fluttered o'er the waters blue
Far out at sea.

Above, there gleamed the boundless sky;
Beneath, the boundless ocean sheen;
Between them danced the butterfly,
The spirit-life of this fair scene,
Far out at sea.

The tiny soul that soared away,
Seeking the clouds on fragile wings,
Lured by the brighter, purer ray
Which hope's ecstatic morning brings—
Far out at sea.

Away he sped, with shimmering glee,
Scarce seen, now lost, yet onward borne!
Night comes with wind and rain, and he
No more will dance before the morn,
Far out at sea.

He dies, unlike his mates, I see,
Perhaps not sooner or worse crossed;
And he hath felt and known and seen
A larger life and hope, though lost
Far out at sea.

—R. H. Horne.
THE ISABELLA TIGER MOTH OR WOOLLY BEAR

Teacher's Story

"Brown and furry,
Caterpillar in a hurry,
Take your walk
To the shady leaf or stalk,
Or what not,

Which may be the chosen spot,
No toad spy you,
Hovering bird of prey pass by you;
Spin and die,
To live again a butterfly."

—Christina Rosetti.

ANY times during autumn, the children find and bring in the very noticeable caterpillar which they call the “woolly bear.” It seems to them a companion of the road and the sunshine; it usually seems in a hurry, and if the children know that it is thus hastening to secure some safe place in which to hide during the season of cold and snow, they are far more interested in its future fate. If the caterpillar is already curled up for the winter, it will “come to” if warmed in the hand or in the sunshine.

The woolly bear is variable in appearance; sometimes there are five of the front segments black, four of the middle reddish brown, and three of the hind segments black. In others there are only four front segments black, six reddish ones, and two that are black at the end of the body; there are still other variations, so that each individual will tell its own story of color. There are really thirteen segments in this caterpillar, not counting the head; but the last two are so joined that probably the children will only count twelve. There are a regular number of tubercles on each side of each segment, and from each of these arises a little rosette of hairs; but the tubercles are packed so closely together, that it is difficult for the children to see how many rosettes there are on each side. While the body of the caterpillar looks as if it were covered with evenly clipped fur, there are usually a few longer hairs on the rear segment.

There is a pair of true legs on each of the three front segments which form the thorax, and there are four pairs of prolegs. All of the segments behind the front three, belong to the abdomen, and the prolegs are on the 3d, 4th, 5th and 6th abdominal segments; the prop-leg is at the rear end of the body. The true legs of this caterpillar have little claws, and are as shining as if encased in patent leather; but the prolegs and prop-leg are merely prolongations of the sides of the body to assist the insect in holding to the leaf. The yellow spot on either side of the first segment is a spiracle; this is an opening leading into the air tubes within the body, around which the blood flows and is thus purified. There are no spiracles on the second and third segments of the thorax, but eight of the abdominal segments have a spiracle on either side.

The woolly bear's head is polished black; its antennæ are two tiny, yellow projections which can easily be seen with the naked eye. The eyes are too small to be thus seen; because of its minute eyes, the woolly bear cannot see very far and, therefore, it is obliged to feel its way. It does this by stretching out the front end of the body and reaching in every
direction, to observe if there is anything to cling to in its neighborhood. When we try to seize the woolly bear, it rolls up in a little ball, and the hairs are so elastic that we take it up with great difficulty. These hairs are a protection from the attacks of birds which do not like bristles for food; and when the caterpillar is safely rolled up, the bird sees only a little bundle of bristles and lets it alone. The woolly bear feeds upon many plants, grass, clover, dandelion and others. It does not eat very much after we find it in autumn, because its growth is completed. The woolly bear should be kept in a box which should be placed out of doors, so that it may be protected from storms but have the ordinary winter temperature. Keeping it in a warm room during the winter often proves fatal.

Normally, the woolly bear does not make its cocoon until April or May. It finds some secluded spot in the fall, and there curls up in safety for the long winter nap; when the warm weather comes in the spring, it makes its cocoon by spinning silk about itself; in this silk are woven the hairs which it sheds easily at that time, and the whole cocoon seems made of felt. It seems amazing that such a large caterpillar can spin about itself and squeeze itself into such a small cocoon; and it is quite as amazing to see the smooth little pupa within the cocoon, in which is condensed all that was essential of the caterpillar. Sometimes when the caterpillars are kept in a warm room, they make their cocoons in the fall, but this is not natural.

The issuing of the moth from the cocoon is an interesting lesson for the last of May. The size of the moth which comes from the cocoon is quite comparable as a miracle with the size of the caterpillar that went into it. The moth is in color dull, grayish, tawny yellow with a few black dots on the wings; sometimes the hind wings are tinted with dull orange-red. On the middle of the back of the moth's body there is a row of six black dots; and on each side of the body is a similar row. The legs are reddish above and tipped with black. The antennæ are small and inconspicuous.
The moths are night fliers, and the mother moth seeks some plant on which to lay her eggs, that will be suitable food for the little caterpillar as soon as it is hatched.

References—Moths and Butterflies, Ballard.

LESSON LXXII

THE ISABELLA TIGER-MOTH, OR WOOLLY BEAR

Leading thought—When we see the woolly bear hurrying along in the fall, it is hunting for some cozy place in which to pass the winter. It makes its cocoon of silk woven with its own hair. In May, it comes forth a yellowish moth with black dots on its wings.

Method—Have the children bring in woolly bears as they find them, place them in boxes or breeding jars which have grass or clover growing in them. The children can handle the caterpillars while they are studying them, and then they should be put back into the breeding jars and be set out of doors where they can have natural conditions; thus the entire history may be studied.

The Caterpillar

Observations—1. How can you tell the woolly bear from all other caterpillars? Are they all colored alike? How many segments of the body are black at the front end? How many are red? How many segments are black at the rear end of the body? How many segments does this make in all?

2. Look closely at the hairs of the woolly bear. Are they set separately or in rosettes? Are any of the hairs of the body longer than others or are they all even?

3. Can you see, just back of the head, the true legs with their little sharp claws? How many are there?

4. Can you see the fleshy legs along the sides of the body? How many are there of these?
5. Can you see the prop-leg, or the hindmost leg of all? Of what use to the caterpillar are these fleshy legs?
6. Describe the woolly bear’s head. How does it act when eating?
7. Can you see a small, bright yellow spot on each side of the segment just behind the head? What do you suppose this is? Can you see little openings along each side of all the segments of the body, except the second and third? What are they? Describe how the woolly bear breathes.
8. On what does the woolly bear feed? If you can find a little woolly bear, give it fresh grass to eat and see how it grows. Why does it shed its skin?
9. When the woolly bear is hurrying along, does it lift its head and the front end of its body now and then? Why does it do this? Do you think it can see far?
10. What does the woolly bear do when you try to pick it up? Do you find you can pick it up easily? Do you think that these stiff hairs protect woolly bear from its enemies? What are its enemies?
11. Where should the woolly bear be kept in winter to make it comfortable?

The Cocoon
1. When does the woolly bear make its cocoon?
2. Of what material is it made? How does the woolly bear get into its cocoon?
3. What happens to it inside the cocoon?
4. Cut open a cocoon and describe how woolly bear looks now.

The Moth
1. Where did the moth come from?
2. How did it come out of the cocoon? See if you can find the empty pupa case in the cocoon.
3. What is the color of the moth and how is it marked? Are the front and hind wings the same color?
4. What are the markings and colors of the body? Of the legs?
5. What do you think that the Mother Isabella will do, if you give her liberty?

The mute insect, fix’t upon the plant
On whose soft leaves it hangs, and from whose cup
Drains imperceptibly its nourishment,
Endear’d my wanderings.

—Wordsworth.

Before your sight,
Mounts on the breeze the butterfly, and soars,
Small creature as she is, from earth’s bright flowers
Into the dewy clouds.

—Wordsworth.
THE CECROPIA

Teacher's Story

The silk-worm which gives us the silk of commerce, has been domesticated for centuries in China. Because of this domestication, it is willing to be handled and is reared successfully in captivity, and has thus come to be the source of most of our silken fabrics. However, we have in America native silk-worms which produce a silk that is stronger and makes a more lustrous cloth than does that made from the Chinese species. But we have never had the time and the patience, here in America, to domesticate these giant silk-worms of ours, and so they are, as yet, of no commercial importance.

The names of our common native silk-worms are: The cecropia, promethea, polyphemus, and luna. In all of these species the moths are large and beautiful, attracting the attention of everyone who sees them. The caterpillars are rarely found, since their varied green colors render them inconspicuous among leaves on which they feed. None of the caterpillars of the giant silk-worms occur in sufficient numbers to injure the foliage of our trees to any extent; they simply help nature to do a little needful pruning. All of the moths are night flyers and are, therefore, seldom seen except by those who are interested in the visitors to our street lights.

The cecropia is the largest of our giant silk-worms, the wings of the moth expanding sometimes six and one-half inches. It occurs from the Atlantic Coast to the Rocky Mountains.
The cecropia cocoon is found most abundantly on our orchard and shade trees; it is called by the children the “cradle cocoon,” since it is shaped like a hammock and hung close below a branch, and it is a very safe shelter for the helpless creature within it. It is made of two walls of silk, the outer one being thick and paperlike and the inner one thin and firm; between these walls is a matting of loose silk, showing that the insect knows how to make a home that will protect it from winter weather. It is a clever builder in another respect, since at one end of the cocoon it spins the silk lengthwise instead of crosswise, thus making a valve through which the moth can push, when it issues in the spring. It is very interesting to watch one of these caterpillars spin its cocoon. It first makes a framework by stretching a few strands of silk, which it spins from a gland opening in the lower lip; it then makes a loose net-work upon the supporting strands, and then begins laying on the silk by moving its head back and forth, leaving the sticky thread in the shape of connecting M’s or of figure 8’s. Very industriously does it work, and after a short time it is so screened by the silk, that the rest of its performance remains to us a mystery. It is especially mysterious, since the inner wall of the cocoon encloses so small a cell that the caterpillar is obliged to compress itself in order to fit within it. This achievement would be something like that of a man who should build around
himself a box only a few inches longer, wider and thicker than himself. After the cocoon is entirely finished, the caterpillar sheds its skin for the last time and changes into a pupa.

Very different, indeed, does the pupa look from the brilliant colored, warty caterpillar. It is compact, brown, oval and smooth, with ability to move but very little when disturbed. The cases which contain the wings, which are later to be the objects of our admiration, are now folded down like a tight cape around the body; and the antennæ, like great feathers, are outlined just in front of the wing cases. There is nothing more wonderful in all nature than the changes which are worked within one of these little, brown pupa cases; for within it, processes go on which change the creature from a crawler among the leaves to a winged inhabitant of the air. When we see how helpless this pupa is, we can understand better how much the strong silken cocoon is needed for protection from enemies, as well as from inclement weather.

In spring, usually in May, after the leaves are well out on the trees, the pupa skin is shed in its turn, and out of it comes the wet and wrinkled moth, its wings all crumpled, its furry, soft body very untidy; but it is only because of this soft and crumpled state that it is able to push its way out through the narrow door into the outer world. It has, on each side of its body just back of the head, two little horny hooks that help it to work its way out. It is certainly a sorry object as it issues, looking as if it had been dipped in water and had been squeezed in an inconsiderate hand. But the wet wings soon spread, the bright antennæ stretch out, the furry body becomes dry and fluffy, and the large moth appears in all its perfection. The ground color of the wings is a dusky, grayish brown while the outer margins are clay colored; the wings are crossed, beyond the middle, by a white band which has a broad outside margin of red. There is a red spot near the apex of the front wing, just outside of the zigzag white line; each wing bears, near its center, a crescent-shaped white spot bordered with red. But though it is so large, it does not need to eat; the caterpillar did all the eating that was necessary for the whole life of the insect; the mouth of the moth is not sufficiently perfected to take food.

When the cecropia caterpillar hatches from the egg, it is about a quarter of an inch long and is black; each segment is ornamented
with six spiny tubercles. Like all other caterpillars, it has to grow by shedding its horny, skeleton skin, the soft skin beneath stretching to give more room at first, then finally hardening and being shed in its turn. This first molt of the cecropia caterpillar occurs about four days after it is hatched, and the caterpillar which issues looks quite different than it did before; it is now dull orange or yellow with black tubercles. After six or seven days more of feeding, the skin is again shed and now the caterpillar appears with a yellow body; the two tubercles on the top of each segment are now larger and more noticeable. They are blue on the first segment, large and orange-red on the second and third segments, and greenish blue with blackish spots and spines on all the other segments except the eleventh, which has on top, instead of a pair of tubercles, one large, yellow tubercle, ringed with black. The tubercles along the side of the insect are blue during this stage. The next molt occurs five or six days later; this time the caterpillar is bluish green in color, the large tubercles on the second and third segments being deep orange, those on the upper part of the other segments yellow, except those on the first and last segments, which are blue. All the other tubercles along the sides are blue. After the fourth molt it appears as an enormous caterpillar, often attaining the length of three inches, and is as large through as a man's thumb; its colors are the same as in the preceding stage. There is some variation in the colors of the tubercles on the caterpillars during these different molts; in the third stage, it has been observed that

A cecropia cocoon.

Photo by M. V. Slingerland.

_and last segments, which are blue. After the fourth molt it appears as an enormous caterpillar, often attaining the length of three inches, and is as large through as a man's thumb; its colors are the same as in the preceding stage. There is some variation in the colors of the tubercles on the caterpillars during these different molts; in the third stage, it has been observed that

The cecropia cocoon cut open, showing the pupa within it.

Photo by M. V. Slingerland.
the tubercles usually blue are sometimes black. After the last molt the caterpillar eats voraciously for perhaps two weeks or longer and then begins to spin its cocoon.

References—Moths and Butterflies, Ballard; Moths and Butterflies, Dickerson; Caterpillars and their Moths, Elliot and Soule.

LESSON LXXII

THE CECROPIA

Leading thought—The cecropia moth passes the winter as a pupa in a cocoon which the caterpillar builds out of silk for the purpose. In the spring the moth issues and lays her eggs on some tree, the leaves of which the caterpillar relishes. The caterpillars are large and green with beautiful blue and orange tubercles.

Method—It is best to begin with the cocoons, for these are easily found after the leaves have fallen. These cocoons if kept in the schoolroom should be thoroughly wet at least once a week. However, it is better to keep them in a box out of doors where they can have the advantage of natural moisture and temperature; and from those that are kept outside the moths will not issue, until the leaves open upon the trees and provide food for the young caterpillars when the eggs hatch.

The Cocoon

Observations—1. How does the cocoon look on the outside? What is its general shape? To what is it fastened? Is it fastened to the lower or the upper side of a twig? Are there any dried leaves attached to it?

2. Where do you find cecropia cocoons? How do they look on the tree? Are they conspicuous?

3. Cut open the cocoon, being careful not to hurt the inmate. Can you see that it has an outer wall which is firm? What lies next to this?
Describe the wall next to the pupa. How does this structure protect the pupa from changes of temperature and dampness?

4. Is the outside covering easy to tear? What birds are strong enough to tear this cocoon apart?

5. Are both ends of the cocoon alike? Do you find one end where the silk is not woven across but is placed lengthwise? Why is this so? Do you think that the moth can push out at this end better than at the other? Do you think the caterpillar, when it wove the cocoon, made it this way so that the moth could get out easily?

The Pupa

1. Take a pupa out of a cocoon carefully and place it on cotton in a wide-mouthed fruit jar where it may be observed. Can the pupa move at all? Is it unable to defend itself? Why does it not need to defend itself?

2. Can you see in the pupa the parts that will be the antennæ and the mouth?

4. Why does the pupa need to be protected by a cocoon?

The Moth

1. What is the first sign which you discover that the moth is coming out of the cocoon? Can you hear the little scratching noise? What do you suppose makes it? How does the moth look when it first comes out? If it were not all soft and wet how could it come out from so small an opening?

2. Describe how the crumpled wings spread out and dry. How does the covering of the wings change in looks?

3. Make a water-color drawing or describe in detail the fully expanded moth, showing the color and markings of wings, body and antennæ.

4. Do the moths eat anything? Why do they not need to eat?

5. If one of the moths lays eggs, describe the eggs, noting color, size and the way they are placed.

The Caterpillar

1. On what do you find the cecropia caterpillar feeding? Describe its actions while feeding.

2. What is the color of the caterpillar? Describe how it is ornamented.

3. Can you see the breathing pores, or spiracles, along the sides of the body? How many of these on each segment? How do they help the caterpillar to breathe?

4. Describe the three pairs of true legs on the three segments just back of the head. Do these differ in form from the prolegs along the sides of the body? What is the special use of the prolegs? Describe the prop-leg which is the hindmost leg of all.

5. Do you know how many times the cecropia caterpillar sheds its skin while it is growing? Is it always the same color?

6. Watch the caterpillar spin its cocoon, describe how it begins and how it acts as long as you can see it. Where does the silk come from?
THE PROMETHEA

Teacher's Story

The promethea is not so large as the cecropia, although the female resembles the latter somewhat. It is the most common of all our giant silk-worms. Its caterpillars feed upon wild cherry, lilac, ash, sassafras, buttonwood and many other forest trees.

During the winter, leaves may often be seen hanging straight down from the branches of wild cherry, lilac and ash. If these leaves are examined, they will be found to be wrapped around a silken case containing the pupa of the promethea. It is certainly a canny insect which hides itself during the winter in so good a disguise, that only the very wisest of birds ever suspect its presence. When the promethea caterpillar begins to spin, it selects a leaf and covers the upper side with silk, then it covers the petiole with silk, fastening it with a strong band to the twig, so that not even most violent winter winds will be able to tear it off. Then it draws the two edges of the leaf about itself like a cloak as far as it will reach, and inside this folded leaf it makes its cocoon, which always has an opening in the shape of a conical valve at the upper end, through which the moth

Promethea cocoons.

Note how the leaves are fastened by silk to the twigs.

Photo by M. V. Slingerland.
may emerge in the spring. This caterpillar knows more botany than some people do, for it makes no mistake in distinguishing a compound leaf from a simple one. When it uses a leaflet of hickory for its cocoon, it fastens the leaflet to the mid stem of the leaf and then fastens the stem to the twig. The male pupa is much more slender than that of the female. The moths do not issue until May or June.

The moth works its way out through the valve at the top of the cocoon. The female is a large, reddish brown moth with markings resembling somewhat those of the cecropia. The male is very different in appearance; its front wings have very graceful, prolonged tips, and both wings are almost black, bordered with ash color. The promethea moths differ somewhat in habit from the other silk-worms, in that they fly during the late afternoon as well as at night. The eggs are whitish with brown stain, and are laid in rows, a good many on the same leaf.

The caterpillars, as they hatch from the eggs, have bodies ringed with black and yellow. They are sociable little fellows and live together side by side amicably, not exactly "toeing the mark" like a spelling class, but all heads in a row at the edge of the leaf where each is eating as fast as possible. When they are small, the caterpillars remain on the underside of the leaves out of sight. In about five days, the first skin is shed and the color of the caterpillar remains about the same. Four or five days later, the second molt occurs, and then the caterpillar appears in a beautiful bluish green costume, with black tubercles, except four large ones on the second and third segments, and one large one on the eleventh segment, which are yellow. This caterpillar has an interesting habit of weaving a carpet of silk on which to change its skin; it seems to be better able to hold on while pushing off the old skin, if it has the silken rug to cling to. After the third molt, the color is a deeper greenish blue and the black tubercles are smaller, and the five big ones are larger and bright orange in color. After the fourth molt, which occurs after a period of about five or six days, the caterpillar appears in its last stage. It is now over two inches long, quite smooth and most prosperous looking. Its color is a beautiful, light, greenish blue, and its head is yellow. It has six rows of short, round, black tubercles. The four large tubercles at the front end of the body are red, and the large tubercle on the rear end of the body is yellow.

The cynthia is a beautiful moth which has come to us from Asia; it is very large with a ground color of olive-green, with lavender tints and
white markings; there are white tufts of hairs on the abdomen. It builds its cocoon like the promethea, fastening the petiole to the twig,

\[\text{The male promethea.} \]
\[\text{Photo by M. V. Slingerland.}\]

therefore the lesson indicated for the promethea will serve as well for the cynthia. The cynthia caterpillars live upon the ailanthus tree and are found only in the regions where this tree has been introduced.

References—Moths and Butterflies, Dickerson; Caterpillars and Their Moths, Elliot and Soule; Moths and Butterflies, Ballard.

\[\text{The female promethea.} \]
\[\text{Photo by M. V. Slingerland.}\]
LESSON LXXIV

The Promethea

Leading thought—The promethea caterpillar fastens a leaf to a twig with silk and then makes its cocoon within this leaf. The male and female moths are very different in appearance.

Method—This work should begin in the late fall, when the children bring in these cocoons which they find dangling on the lilac bushes or wild cherry trees. Much attention should be paid to the way the leaf is fastened to the twig so it will not fall. The cocoons should be kept out of doors, so that the moths will issue late in the spring when they can have natural conditions for laying their eggs, and the young caterpillars are supplied with plenty of food consisting of new and tender leaves.

The Cocoon

Observations—1. On what tree did you find it? Does it look like a cocoon? Does it not look like a dried leaf still clinging to the tree? Do you think that this disguise keeps the birds from attacking it? Do you know which birds are clever enough to see through this disguise?

2. How is the leaf fastened to the twig? Could you pull it off readily? What fastened the leaf to the twig?

3. Tear off the leaf and study the cocoon. Is there an opening to it? At which end? What is this for?

4. Cut open a cocoon. Is it as thick as that of the cecropia?

5. Study the pupa. Is it as large as that of the cecropia?

6. Can you see where the antennæ of the moth are? Can you see the wing covers? Can the pupa move?

The Moth

1. Are there two kinds of moths that come from the promethea cocoons? Does one of them look something like the cecropia? This is the mother promethea.

2. Are any of the moths almost black in color with wings bordered with gray and with graceful prolonged tips to the front wings? This is the father moth.

3. Make water color drawings of promethea moths, male and female.

4. If a promethea mother lays eggs, describe them.

The Caterpillar

1. How do the promethea caterpillars look when they first hatch from the eggs? Do they stay together when they are very young? How do they act? Where do they hide?

2. How do they change color as they grow older? Do they remain together or scatter? Do they continue to hide on the lower sides of leaves?

3. What preparation does a promethea caterpillar make before changing its skin? Why does it shed its skin? Does its colors change with every change of skin?

4. Describe the caterpillar when it is full-grown. What is its ground color? What are the colors of its ornamental tubercles? The color of its head?

5. Describe how a promethea caterpillar makes its cocoon.
THE HUMMINGBIRD, OR SPHINX, MOTHS

Teacher's Story

F during the early evening, when all the swift humming birds are abed, we hear the whirr of rapidly moving wings and detect the blur of them in the twilight, as if the creature carried by them hung entranced before some deep-throated flower, and then whizzed away like a bullet, we know that it was a hummingbird, or sphinx, moth. And when we see a caterpillar with a horn on the wrong end of the body, a caterpillar which, when disturbed, rears threateningly, then we may know it is the sphinx larva. And when we find a strange, brown segmented shell, with a long jug handle at one side, buried in the earth as we spade up the garden in the spring, then we know we have the sphinx pupa.

The sphinx was a vaudeville person of ancient mythology who went about boring people by asking them riddles; and, if they could not give the right answers, very promptly ate them up. Although Linnaeus gave the name of sphinx to these moths, because he fancied he saw a resemblance in the resting or threatening attitude of the larvae to the Egyptian Sphinx, there are still other resemblances. These insects present three riddles: The first one is, "Am I a humming-bird?" the second, "Why do I wear a horn or an eye-spot on the rear end of my body where horns and eyes are surely useless?" and the third, "Why do I look like a jug with a handle and no spout?"

The sphinx moths are beautiful and elegant creatures. They have a distinctly tailor-made appearance, their colors are so genteel and "the cut" so perfect. They have long, rather narrow, strong wings which enable them to fly with extraordinary rapidity. The hind wings are shorter, but act as one with the front wings. The body is stout and spindle-shaped. The antennae are thickened in the middle or toward the tip, and in many species have the tip recurved into a hook. Their colors show most harmonious combinations and most exquisite contrasts; the pattern, although often complex, shows perfect refinement. Olive, tan, brown and ochre, black and yellow, and the whole gamut of greys, with eye-spots or bands athwart the hind wings of rose color or crimson, are some of the sphinx color schemes.

Most of the sphinx moths have remark-
able long tongues, being sometimes twice the length of the body. When not in use, the tongue is curled like a watch spring in front and beneath the head; but of what possible use is such a long tongue! That is a story for certain flowers to tell, the flowers which have the nectar wells far down at the base of tubular corollas, like the petunia, the morning glory or the nasturtium; such flowers were evidently developed to match the long-tongued insects. Some of these flowers, like the jimson weed and nicotina, open late in the day so as to be ready for these evening visitors. In some cases, especially in the orchids, there is a special partnership established between one species of flower and one species of sphinx moths. The tobacco sphinx is an instance of such partnership; this moth visits tobacco flowers and helps develop the seeds by carrying pollen from flower to flower; and in turn it lays its eggs upon the leaves of this plant, on which its great caterpillar feeds and waxes fat, and in high dudgeon often disputes the smoker's sole right to the "weed." Tobacco probably receives enough benefit from the ministrations of the moth to compensate for the injury it suffers from the caterpillars; but the owner of the tobacco field, not being a plant, does not look at it in this equitable man.

The sphinx caterpillars are leaf eaters and each species feeds upon a limited number of plants which are usually related; for instance, one feeds upon both the potato and tomato; another upon the Virginia creeper and grapes. In color these caterpillars so resemble the leaves that they are discovered with difficulty. Those on the Virginia creeper, which shades porches, may be located by the black pellets of waste material which fall from them to the ground; but even after this unmistakable hint I have searched a long time to find the caterpillar in the leaves above; its color serves to hide the insect from birds which feed upon it eagerly. In some species, the caterpillars are ornamented with oblique stripes along the sides, and in others the stripes are lengthwise. There is often a great variation in color between the caterpillars of
the same species; the tomato worm is sometimes green and sometimes black.

The horn on the rear end is often in the young larva of different color than the body; in some species it stands straight up and in some it is curled toward the back. It is an absolutely harmless projection and does not sting nor is it poisonous. However, it looks awe-inspiring and perhaps protects its owner in that way. The Pandora sphinx has its horn curled over its back in the young stage but when fully grown the horn is shed; in its place is an eye-spot which, if seen between the leaves, is enough to frighten away any cautious bird fearing the evil eye of serpents. The sphinx caterpillars have a habit, when disturbed or when resting, of rearing up the front part of the body, telescoping the head back into the thoracic segments, which in most species are enlarged, and assuming a most threatening and ferocious aspect. If attacked they will swing sidewise, this way and then that, making a fierce crackling sound meanwhile, well calculated to fill the trespasser with terror. When resting they often remain in this lifted attitude for hours, absolutely rigid.

The six true legs are short with sharp, little claws. There are four pairs of fleshy prolegs, each foot being armed with hooks for holding on to leaf or twig; and the large, fleshy prop-leg on the rear segment is able to clasp a twig like a vise. All these fleshy legs are used for holding on, while the true legs are used for holding the edges of the leaf where the sidewise working jaws can cut it freely. These caterpillars do clean work, leaving only the harder and more woody ribs of the leaves. The myron caterpillar seems to go out of its way to cut off the stems of both the grape and Virginia creeper.

There are nine pairs of spiracles, a pair on each segment of the abdomen and on the first thoracic segment. The edges of these air openings are often strikingly colored. Through the spiracles the air is admitted into all the breathing tubes of the body around which the blood flows and is purified; no insect breathes through its mouth. These caterpillars, like all others, grow by shedding the skeleton skin, which splits down the back.

Often one of these caterpillars is seen covered with white objects which the ignorant,
who do not know that caterpillars never lay eggs, have called, eggs. But the sphinx moths at any stage would have horror of such eggs as these! They are not eggs but are little silken cocoons spun by the larva of a hymenopterous parasite. It is a tiny, four-winged “fly” which lays its eggs within the caterpillar. The little grubs which hatch from these eggs feed upon the fleshy portions of the caterpillar until they get their growth, at which time the poor caterpillar is almost exhausted; and then they have the impudence to come out and spin their silken cocoons and fasten them to the back of their victim. Later, they cut a little lid to their silken cells which they lift up as they come out into the world to search for more caterpillars.

As soon as the sphinx larva has obtained its growth, it descends and burrows into the earth. It does not spin any cocoon but packs the soil into a smooth-walled cell in which it changes to a pupa. In the spring the pupa works its way to the surface of the ground and the moth issues. In the case of the tomato and tobacco sphinx pupa, the enormously long tongue has its case separate from the body of the pupa, which makes the “jug handle.” The wing cases and the antennae cases can be distinctly seen. In the case of the other species the pupae have the tongue case fast to the body. The larva of the myron sphinx does not enter the ground, but draws a few leaves about it on the surface of the ground, fastens them with silk and there changes to a pupa.

References—Caterpillars and their Moths, Elliot and Soule; Moths and Butterflies, Dickerson; Moths and Butterflies, Ballard; Manual for the Study of Insects, Comstock.
LESSON LXXV

The Humming-bird, or Sphinx, Moths

Leading thought—The sphinx caterpillars have a slender horn or eye-spot on the last segment of the body. When disturbed or when resting they rear the front part of the body in a threatening attitude. They spin no cocoons but change to pupae in the ground. The adults are called humming-bird moths, because of their swift and purring flight. Many flowers depend upon the sphinx moths for carrying their pollen.

Method—The sphinx caterpillar found on the potato or tobacco, or one of the species feeding upon the Virginia creeper is in September available in almost any locality for this lesson. The caterpillars should be placed in a breeding cage in the schoolroom. Fresh food should be given them every day and moist earth be placed in the bottom of the cages. It is useless for the amateur to try to rear the adults from the pupae in breeding cages. The moths may be caught in nets during the evening when they are hovering over the petunia beds. These may be placed on leaves in a tumbler or jar for observation.

The Caterpillar

Observations—1. On what plant is it feeding? What is its general color? Is it striped? What colors in the stripes? Are they oblique or lengthwise stripes? Are all the caterpillars the same color?

The pupae of the Myron sphinx within the cocoons.

Photo by M. V. Slingerland.
2. Can you find the caterpillar easily when feeding? Why is it not conspicuous when on the plant? Of what use is this to the caterpillar?
3. Note the horn on the end of the caterpillar. Is it straight or curled? Is it on the head end? What color is it? Do you think it is of any use to the caterpillar? Do you think it is a sting? If there is no horn, is there an eye-spot on the last segment? What color is it? Can you think of any way in which this eye-spot protects the caterpillar?
4. Which segments of the caterpillar are the largest? When the creature is disturbed what position does it assume? How does it move? What noise does it make? Do you think this attitude scares away enemies? What position does it assume when resting? Do you think that it resembles the Egyptian Sphinx when resting?
5. How many true legs has this caterpillar? How does it use them when feeding? How many prolegs has it? How are these fleshy legs used? How are they armed to hold fast to the leaf or twig? Describe the hind or prop-leg. How is it used?

6. Do you see the breathing pores or spiracles along the sides of the body? How many are there? How are they colored? How does the caterpillar breathe? Do you think it can breathe through its mouth?
7. How does the sphinx caterpillar grow? Watch your caterpillar and see it shed its skin. Where does the old skin break open? How does the new, soft skin look? Do the young caterpillars resemble the full-grown ones?
8. Describe how the caterpillar eats. Can you see the jaws move? Does it eat up the plant clean as it goes?
9. Have you ever found the sphinx caterpillar covered with whitish, oval objects? What are these? Does the caterpillar look plump or emaciated? Explain what these objects are and how they came to be there.
10. Where does the caterpillar go to change to a pupa? Does it make cocoons? How does the pupa look? Can you see the long tongue case, the wing cases, the antennae cases?

The Moth

1. Where did you find this moth? Was it flying by daylight or in the dusk? How did its swift moving wings sound? Was it visiting flowers? What flowers? Where is the nectar in these flowers?
2. What is the shape of the moth’s body? Is it stout or slender? What colors has it? How is it marked?
3. The wings of which pair are longer? Sketch or describe the form of the front and the hind wings? Are the outer edges scalloped,
notched or even? What colors are on the front wing? On the hind one? Are these colors harmonious and beautiful? Make a sketch of the moth in water-color.

4. What is the shape of the antennae? Describe the eyes. Can you see the coiled tongue? Uncoil it with a pin and note how long it is. Why does this moth need such a long tongue?

5. From what flowers do the sphinx moths get nectar? How does the moth support itself when probing for nectar? Do you know any flowers which are dependent on the sphinx moths for carrying their pollen? How many kinds of sphinx moths do you know?

——Christina Rossetti.

The moths of the Myron sphinx on Virginia creeper.
Photo by M. V. Slingerland.

Hurt no living thing:
Ladybird, nor butterfly,
Nor moth with dusty wing,
Nor cricket chirping cheerily,
Nor grasshopper so light of leap,
Nor dancing gnat, nor beetle fat,
Nor harmless worms that creep.

The white-lined sphinx moth.
THE CODLING MOTH
Teacher's Story

It is difficult to decide which seems the most disturbed, the person who bites into an apple and uncovers a worm, or the worm which is uncovered. From our standpoint, there is nothing attractive about the worm which destroys the beauty and appetizing qualities of our fruit, but from the insect standpoint the codling caterpillar (which is not a worm at all), is not at all bad. When full-grown, it is about three-fourths of an inch long, and is likely to be flesh color, or even rose color, with brownish head; as a young larva, it has a number of darker rose spots on each segment and is whitish in color; the shield on the first segment behind the head, and that on the last segment of the body, are black. When full-grown, the apple worm is plump and lively; and while jerking angrily at being disturbed, we can see its true legs, one pair to each of the three segments of the body behind the head. These true legs have sharp, single claws. Behind these the third, fourth, fifth and sixth segments of the abdomen are each furnished with a pair of fleshy prolegs and the hind segment has a prop-leg. These fleshy legs are mere make-shifts on the part of the caterpillar for carrying the long body; since the three pairs of front legs are the ones from which develop the legs of the moth. The noticing of the legs of the codling moth is an important observation on the part of the pupils, since, by their presence, this insect may be distinguished from the young of the plum curculio, which is also found in apples but which is legless. The codling moth has twelve segments in the body, back of the head.

The codling larva usually enters the apple at the blossom end and tunnels down by the side of the core until it reaches the middle, before making its way out into the pulp. The larva weaves a web as it goes, but this is probably incidental, since many caterpillars spin silk as they go, "street yarn" our grandmothers might have called it. In this web are entangled the pellets of indigestible matter, making a very unsavory looking mass. The place of exit is usually circular, large enough to accommodate the body of the larva, and it leads out from a tunnel which may be a half inch or more in diameter beneath the rind. Often the larva makes the door sometime before it is ready to leave the apple, and plugs it with a mass of debris, fastened together with the silk. As it leaves the apple, the remnants of this plug may be seen streaming out of the opening. Often also, there is a mass of waste pellets pushed out by the young larva from its burrow, as it enters the apple; thus it injures the appearance of the apple, at both entrance and exit. If the apple has not received infection by lying next to another rotting apple, it first begins to rot around the burrow of the worm, especially near the place of exit.

The codling caterpillar injures the fruit in the following ways: The apples are likely to be stunted and fall early; the apples rot about the injured places and thus cannot be stored successfully; the apples thus injured look unattractive and, therefore, their market value is lessened; wormy apples, packed in barrels with others, rot and contaminate all the
neighboring apples. This insect also attacks pears and sometimes peaches. It has been carefully estimated that every year the codling moth does three million dollars worth of injury to the apple and pear crops in New York State. Think of paying three million dollars a year for the sake of having wormy apples! The larvae usually leave the apples before winter. If the apples have fallen, they crawl up the tree and there make their cocoons beneath the loose bark; but if they leave the apples while they are on the trees, they spin silk and swing down. If carried into the storeroom or placed in barrels, they seek quarters in protected crevices. In fact, while they particularly like the loose bark of the apple trees, they are likely to build their cocoons on nearby fences or on brush, wherever they can find the needed protection. The cocoon is made of fine but rather rough silk which is spun from a gland opening near the mouth of the caterpillar; the cocoon is not beautiful although it is smooth inside. It is usually spun between a loose bit of bark and the body of the tree; but after making it, the insect seems in no hurry to change its condition and remains a quite lively caterpillar until spring. It is while the codling larvae are in their winter quarters that our bird friends of the winter, the nut-hatches, woodpeckers and chickadees, destroy them in great numbers, hunting eagerly for them in every crevice of the trees. It is therefore good policy for us to coax these birds to our orchards by placing beef fat on the branches and thus entice these little caterpillar hunters to visit the trees every day.

It is an interesting fact that the codling caterpillars, which make cocoons before August first, change immediately to pupae which soon change to moths, and thus another generation gets in its work before the apples are harvested.

The codling moth is a beautiful little creature with delicate antennae.
and a brown, mottled and banded body; its wings are graced by wavy bands of ashy and brown lines, and the tips of the front wings are dark brown with a pattern of gold bronze wrought into them; the hind wings are shiny brown with darker edges and little fringes. The moths issue in the spring and lay their eggs on the young apples just after the petals fall. The egg looks like a minute drop of dried milk and is laid on the side of the bud; but the little larva, soon after it is hatched, crawls to the blossom and finds entrance there; and it is therefore important that its first lunch should include a bit of arsenic and thus end its career before it fairly begins. The trees should be sprayed with some arsenical poison directly after the petals fall, and before the five lobes of the calyx close up around the stamens. If the trees are sprayed while blossoming, the pollen is washed away and the apples do not set; moreover, the bees which help us much in carrying pollen are killed. If the trees are sprayed directly after the calyx closes up around the stamens the poison does not lodge at the base of the stamens and the little rascals get into the apples without getting a dose. (See Lesson on the Apple).

LESSON LXXVI

The Codling Moth

Leading thought—The codling moth is a tiny brown moth with bronze markings which lays its egg on the apple. The larva hatching from the egg enters the blossom end and feeds upon the pulp of the apple, injuring it greatly. After attaining its growth it leaves the apple and hides beneath the bark of the tree or in other protected places, and in the spring makes the cocoon from which the moth issues in time to lay eggs upon the young apples.
Method—

The lesson should begin with a study of wormy apples, preferably in the fall when the worms are still within their burrows. After the pupils become familiar with the appearance of the insect and its methods of work, a prize of some sort might be offered for the one who will bring to school the greatest number of hibernating larvae found in their winter quarters. Place these larvae in a box with cheese-cloth tacked over its open side; place this box out of doors in a protected position. Examine the cocoons to find the pupæ about the last of April; after the pupæ appear, look for the moths in about five days.

It would be a very good idea for the pupils to prepare a Riker mount showing specimens of the moths, of the cocoons showing the cast pupa skin, and of the caterpillar in a homeopathic vial of alcohol; pictures illustrating the work of the insect may be added. The pictures should be drawn by the pupils, showing the wormy apple, both the outside and in section. The pupils can also sketch, from the pictures here given, the young apple when just in the right condition to spray, with a note explaining why.

Observations—1. Find an apple with a codling moth larva in it. How large is the worm? How does it act when disturbed?

2. What is the color of the caterpillar’s body? Its head?

3. How many segments are there in the body? How many of these bear legs? What is the difference in form between the three front pairs of legs and the others?

4. Look at a wormy apple. How can you tell it is wormy from the outside? Can you see where the worm entered the apple? Was the burrow large or small at first? Can you find an apple with a worm in it which has the door for exit made, but closed with waste matter? How is this matter fastened together? If the apple has no worm in it, can you see where it left the apple? Make a sketch or describe the evidence of the caterpillar’s progress through the apple. Do you find a web of silk in

Just ready to spray. A pear and two apples from which the petals have recently fallen and with calyx lobes widely spread.

Photo by M. V. Slingerland.
the wormy part? Why is this? Does the worm eat the seeds as well as the pulp of the apple?

5. Take a dozen rotting apples, how many of them are wormy? Do the parts of the apple injured by the worm begin to rot first? In how many ways does the codling moth injure the apple? Does it injure other fruits than apples?

6. How late in the fall do you find the codling larvae in the apple? Where do these larvae go when they leave the apple?

Work to be done in March or early April—Visit an orchard and look under the loose bark on old trees, or along protected sections of fences or brush piles and bring in all the cocoons you can find. Do not injure the cocoons by tearing them from the places where they are woven, but bring them in on bits of the bark or other material to which they are attached.

1. How does the cocoon look outside and inside? What is in the cocoon? Why was the cocoon made? When was it made?

2. Place the cocoons in a box covered with cheese-cloth and place the box out of doors where the contents can be frequently observed and make the following notes:

3. When does the larva change to the pupa? Describe the pupa. How does the cocoon look after the moth issues from it?

4. Describe the moth, noting color of head, thorax, body, front and hind wings?

5. If these moths were free to fly around the orchard, when and where would they lay their eggs?

6. When should the trees be sprayed to kill the young codling moth? With what should they be sprayed? Why should they not be sprayed during the blossoming period? Why not after the calyx closes?

Almost too late to spray. The apples on each side have the calyx lobes nearly drawn together. The pear in the middle still has the calyx cavity open.

Photo by M. V. Slingerland.
7. How do the nuthatches, downy woodpeckers and chickadees help us in getting rid of the codling moth?
8. Write an essay on the life history of the codling moth, the damage done by it, and the best methods of keeping it in check.

LEAF-MINERS
Teacher’s Story

“And there’s never a leaf nor a blade too mean
To be some happy creature’s palace”
—LOWELL.

AY not Lowell have had in mind, when he wrote these lines, the canny little creatures which find sustenance for their complete growth between the upper and lower surfaces of a leaf, which seems to us as thin as a sheet of paper. To most children, it seems quite incredible that there is anything between the upper and lower surfaces of a leaf, and this lesson should hinge on the fact that in every leaf, however thin, there are rows of cells containing the living substance of the leaf, with a wall above and a wall below to protect them. Some of the smaller insects have discovered this hidden treasure, which they mine while safely protected from sight, and thus make strange figures upon the leaves.

Among the most familiar of these are the serpentine mines, so called because the figure formed by the eating out of the green pulp of the leaf, curves like a serpent. These mines are made by the caterpillars of tiny moths, which have long fringes upon the hind wings. The life story of such a moth is as follows: The little moth, whose expanded wings measure scarcely a quarter of an inch across, lays an egg on the leaf; from this, there hatches a tiny caterpillar that soon eats its way into the midst of the leaf. In shape, the caterpillar is somewhat “square built,” being rather stocky and wide for its length; it feeds upon the juicy tissues of the leaf and divides, as it goes, the upper from the lower surface of the leaf; and it teaches us, if we choose to look, that these outer walls of the leaf are thin, colorless, and paper-like. We can trace the whole life history and wanderings of the little creature, from the time when, as small as a pin point, it began to feed, until it attained its full growth. As it increased in size, its appetite grew larger also, and these two forces working together naturally enlarged its house. When finally the little miner gets its growth, it makes a rather larger and more commodious room at the end of its mine, which to us looks like
the head of the serpent; here it changes to a pupa, perhaps after nibbling a hole with its sharp little jaws, so that when it changes to a soft, fluffy little moth with mouth unfit for biting, it is able to escape. In some species, the caterpillar comes out of the mine and goes into the ground to change to a pupa. By holding up to the light a leaf thus mined, we can see why this little chap was never obliged to clean house; it mined out a new room every day, and left the sweepings in the abandoned mine behind. Mines of this sort are often seen on the leaves of nasturtium, the smooth pigweed, columbine, and many other plants. There are mines of many shapes, each form being made by a different species of insect. Some flare suddenly from a point and are trumpet-shaped while some are mere blotches. The blotch mines are made, through the habits of the insect within them; it feeds around and around, instead of forging ahead, as is the case with the serpentine miners. The larvæ of beetles, flies and moths may mine leaves, each species having its own special food plant. Most of the smaller leaf mines are made by the caterpillars of the moths, which are fitly called the Tineina or Tineids. Most of these barely have a wing expanse that will reach a quarter of an inch and many are much smaller; they all have narrow wings, the hind wings being mere threads bordered with beautiful fringes. The specific names of these moths usually end in "ella;" thus, the one that mines in apple is *malifoliella*, the one in grain is *granella*. One of these little moths, *Gelechia pinifoliella* lives the whole of its growing life in half of a pine needle. The moth lays the egg at about the middle of the needle, and the little caterpillar that hatches from it, gnaws its way directly into the heart of the needle; and there, as snug as snug can be, it lives and feeds until it is almost a quarter of an inch long, think of it! Many a time I have held up to the light a pine needle thus inhabited, and have seen the little miner race up and down its abode as if it knew that something was happening. When it finally attains its

Serpentine mines in leaf of nasturtium.

Comstock's Manual.
growth it makes wider the little door, through which it entered; it does this very neatly, the door is an even oval, and looks as if it were made with the use of dividers. After thus opening the door, the caterpillar changes to a little, long pupa, very close to its exit; and later it emerges, as an exquisite little moth with silvery bands on its narrow, brown wings, and a luxurious fringe on the edges of its narrow, hind wings and also on the outer hind edges of the front wings.

The gross mines in the leaves of dock and beet are not pretty. The poor leaves are slitted, sometimes for their whole length, and soon turn brown and lie prone on the ground, or dangle pathetically from the stalk. These mines are made by the larvae of a fly, and a whole family live in the same habitation. If we hold a leaf thus mined up to the light, while it is still green, we can see several of the larvae working, each making a bag in the life substance of the leaf, and yet all joining together to make a great blister. The flies that do this mischief belong to the family Anthomyinae; and there are several species which have the perturbing habit of mining the leaves of beets and spinach. It behooves those of us who are fond of these "greens," as our New England ancestors called them, to hold every leaf
up to the light before we put it into the skillet, lest we get more meat than vegetable in these viands. The flies, who thus take our greens ahead of us, are perhaps a little larger than house-flies, and are generally gray in color with the front of the head silver-white. These insects ought to teach us the value of clean culture in our gardens, since they also mine in the smooth pigweed.

References—Manual for the Study of Insects, Comstock.

LESSON LXXVII

Leaf-miners

Leading thought—The serpent-like markings and the blister-like blotches which we often see on leaves are made by the larvae of insects which complete their growth by feeding upon the inner living substance of the leaf.

Method—The nasturtium leaf-miner is perhaps the most available for this lesson since it may be found in its mine in early September. However, the pupils should bring to the schoolroom all the leaves with mines in them, that they can find and study the different forms.

Observations—1. Sketch the leaf with the mine in it, showing the shape of the mine. What is the name of the plant on which the leaf grew?

2. Hold the leaf up to the light, can you see the insect within the mine? What is it doing? Are there more than one insect in the mine? Open the mine and see how the miner looks.

3. There are three general types of mines: Those that are long, curving lines called serpentine mines; those that begin small and flare out, called trumpet mines; and those that are blister-like called blotch mines. Which of these is the mine you are studying?

4. Study a serpentine mine. Note that where the little insect began to eat, the mine is small. Why does it widen from this point? What happened in the part which we call the serpent’s head?

5. Look closely with a lens and find if there is a break above the mine in the upper surface of the leaf or below the mine in the lower surface of the leaf? If the insect is no longer in the mine can you find where it escaped? Can you find a shed pupa-skin in the “serpent’s head?”

6. Why does an insect mine in a leaf? What does it find to eat? How is it protected from the birds or insects of prey while it is getting its growth?

7. Look on leaves of nasturtium, columbine, lamb’s quarters, dock and burdock, for serpentine mines. Are the mines on these different plants alike? Do you suppose they are made by the same insect?

8. Look on leaves of dock, burdock, beet and spinach for blotch mines. Are there more than one insect in these mines? If the insects are present, hold the leaf out to the light and watch them eat.

9. Look in the leaves of pitch or other thick leaved pines (not white pine), for pine needles which are yellow at the tip. Examine these for miners. If the miner is not within, can you find the little circular door
by which it escaped? Would you think there was enough substance in a half a pine needle to support a little creature while it grew up?

10. If you find leaf-miners at work, do not pluck off the leaves being mined but cover each with a little bag of Swiss muslin tied close about the petiole and thus capture the winged insect.

Witch-hazel, showing work of leaf-rollers, leaf-miners and gall-makers.
THE LEAF-ROLLERS

Teacher's Story

If we look closely at sumac leaves before they are aflame from autumn's torch, we find many of the leaflets rolled into little cornucopias fastened with silk. The silk is not in a web, like that of the spider, but the strands are twisted together, hundreds of threads combined in one strong cable, and these are fastened from roll to leaf, like tent ropes. If we look at the young basswoods, we find perhaps many of their leaves cut across, and the flap made into a roll and likewise fastened with silken ropes. The witch-hazel, which is a veritable insect tenement, also shows these rolls. In fact, we may find them upon the leaves of almost any species of tree or shrub, and each of these rolls has its own special maker or indweller. Each species of insect, which rolls the leaves, is limited to the species of plant on which it is found; and one of these caterpillars would sooner starve than take a mouthful from a leaf of any other plant. Some people think that insects will eat anything that comes in their way; but of all created animals, insects are the most fastidious as to their food.

Some species of leaf-rollers unite several leaflets together, while others use a single leaf. In the case of the sumac leaf-roller, it begins in a single leaf; but in its later stages, it fastens together two or three of the terminal leaflets in order to gain more pasturage. The little silken tent ropes which hold the folded leaves are well worth study with a lens. They are made of hundreds of threads of the finest silk, woven from a gland opening near the lower lip of the caterpillar. The rope is always larger where it is attached to the leaf than at the center, because the caterpillar criss-crosses the threads in order to make the attachment to the leaf larger and firmer. Unroll a tent carefully, and you may see the fastenings used in an earlier stage, and may even find the first turned-down edge of the leaf. However, the center of a leaf roller's habitation is usually very much eaten, for the whole reason for making its little house...
is that the soft-bodied caterpillar may eat its fill completely hidden from the eyes of birds or other animals. When it first hatches from the egg, it feeds for a short time, usually on the under side of the leaf; but when still so small that we can barely see it with the naked eye, it somehow manages to fold over itself one edge of the leaf and peg it down. The problem of how so small a creature is able to pull over and fold down or to make in a roll a stiff leaf is hard to solve. I, myself, believe it is done by making many threads, each a little more taut than the last. I have watched several species working, and the leaf comes slowly together as the caterpillar stretches its head and sways back and forth hundreds of times, fastening the silk first to one side and then to the other. Some observers believe that the caterpillar throws its weight upon the silk, in order to pull the leaf together; but in the case of the sumac leaf-roller, I am sure this is not true, as I have watched the process again and again under a lens, and could detect no signs of this method.

Many of the caterpillars which make rolls, change to small moths known as Tortricids. This is a very large family, containing a vast number of species and not all of the members are leaf-rollers. These little moths have the front wings rather wide and more or less rectangular in outline. The entomologists have a pleasing fashion of ending the names of all of these moths with "ana;" the one that rolls the currant leaves is Rosana, the one on juniper is Rutilana, etc. Since many of the caterpillars of this family seek the ground to pupate and do not appear as moths until the following spring, it is somewhat difficult to study their complete life histories, unless one has well-made breeding cages with earth at the bottom; and even then it is difficult to keep them under natural conditions, since in an ordinary living room the insects dry up and do not mature.
Insect Study

Leaflets of locust, fastened together to make a nest by the caterpillar of a butterfly.

LESSON LXXVIII

The Leaf-rollers

Leading thought—There are many kinds of insects which roll the leaves of trees and plants into tents, in which they dwell and feed during their early stages.

Method—This is an excellent lesson for early autumn when the pupils may find many of these rolled leaves, which they may bring to the schoolroom, and which will give material for the lesson. The rolls are found plentifully on sumac, basswood and witch-hazel.

Observations—
1. What is the name of the trees and shrubs from which these rolled leaves which you have collected were taken?
2. Are more than one leaf or leaflet used in making the roll?
3. Is the leaf rolled crosswise or lengthwise? How large is the tube thus made?
4. Is the nest in the shape of a tube, or are several leaves fastened together, making a box-shaped nest?
5. How is the roll made fast? Examine the little silken ropes with a lens and describe one of them. Is it wider where it is attached to the leaf than at the middle? Why?
6. How many of these tent ropes are there which make fast the roll? Unroll a leaf carefully and see if you can find signs of the tent ropes that fastened the roll together when it was smaller. Can you find where it began?
7. As you unroll the leaves what do you see at the center? Has the leaf been eaten? Can you discover the reason why the caterpillar made this roll?
8. How do you think a caterpillar manages to roll a leaf so successfully? Where is the spinning gland of a caterpillar? How does the insect act when spinning threads back and forth when rolling the leaf? What sort of insect does the caterpillar which rolls the leaf change into? Do you suppose that the same kind of caterpillars makes the rolls on two different species of trees?
9. In July or early August get some of the rolls with the caterpillars in them, unroll a nest, take the caterpillar out and put it on a fresh leaf of the same kind of tree or shrub on which you found it, and watch it make its roll.

Supplementary reading—"A Dweller in Tents" and "A Little Nomad," in Ways of the Six-Footed.
THE GALL-DWELLERS

He retired to his chamber, took his lamp, and summoned the genius as usual. "Genius," said he, "build me a palace near the sultan's, fit for the reception of my spouse, the princess; but instead of stone, let the walls be formed of massy gold and silver, laid in alternate rows; and let the interstices be enriched with diamonds and emeralds. The palace must have a delightful garden, planted with aromatic shrubs and plants, bearing the most delicious fruits and beautiful flowers. But, in particular, let there be an immense treasure of gold and silver coin. The palace, moreover, must be well provided with offices, storehouses, and stables full of the finest horses, and attended by esquires, grooms, and hunting equipage." By the dawn of the ensuing morning, the genius presented himself to Aladdin, and said, "Sir, your palace is finished; come and see if it accords with your wishes."—Arabian Nights Entertainments.

Although Aladdin is out of fashion, we still have houses of magic that are even more wonderful than that produced by his resourceful lamp. These houses are built through an occult partnership between insects and plant tissues; and no one understands just how they are made, although we are beginning to understand a little concerning the reasons for the growth. These houses are called galls and are thus well named, since they grow because of an irritation to the plant caused by the insect.

There are many forms of these gall-dwellings, and they may grow upon the root, branch, leaf, blossom, or fruit. The miraculous thing about them is that each kind of insect builds its magical house on a certain part of a certain species of tree or plant; and the house is always of a certain definite form on the outside and of a certain particular pattern within. Many widely differing species of insects are gall-makers; and he who is skilled in gall lore knows, when he looks at the outside of the house, just what insect dwells within it.
Insect Study

We may take the history of the common oak apple, as an example. A little, four-winged, fly-like creature lays its eggs, early in the season, on the leaf of the scarlet oak. As soon as the larva hatches, it begins to eat into the substance of one of the leaf veins. As it eats, it discharges through its mouth into the tissues of the leaf, a substance which is secreted from glands within its body. Immediately the building of the house commences; out around the little creature grow radiating vegetable fibers, showing by their position plainly that the grub is the center of all of this new growth; meanwhile, a smooth, thin covering completely encloses the globular house; larger and larger grows the house until we are accustomed to call it an oak apple, so large is it. The little chap inside is surely content and happy, for it is protected from the sight of all of its enemies, and it finds the walls of its house the best of food. It is comparable to a boy living in the middle of a giant sponge cake, and who when hungry would naturally eat out a larger cave in the heart of the cake. After the inmate of the oak apple completes its growth, it changes to a pupa and finally comes out into the world a tiny four-winged fly, scarcely a quarter of an inch in length.

The story of the willow cone-gall is quite different. A little gnat lays her eggs on the tip of the bud of a twig; as soon as the grub hatches and begins to eat, the growth of the twig is arrested, the leaves are stunted until they are mere scales and are obliged to overlap in rows around the little inmate, thus making for it a cone-shaped house which is very thoroughly shingled. The inhabitant of this gall is a hospitable little fellow, and his house shelters and feeds many other insect guests. He does not pay any attention to them, being a recluse in his own cell, but he civilly allows them to take care of themselves in his domain, and feed upon the walls of his house. He stays in his snug home all winter and comes out in the spring a tiny, two-winged fly.

There are two galls common on the stems of goldenrod. The more numerous is spherical in form and is made by a fat and prosperous looking little grub which later develops into a fly. But although it is a fly that makes the globular gall in the stem of goldenrod, the spindle-shaped gall often seen on the same stem has quite another story. A little brown and gray mottled moth, about three-fourths of an inch long, lays her egg on the stem of the young goldenrod. The caterpillar, when it hatches, lives inside the stem, which accommodatingly
enlarges into an oblong room. The caterpillar feeds upon the substance of the stem until it attains its growth, and then seems to dimly realize something about its future needs. At least it cuts, with its sharp jaws, a little oval door at the upper end of its house and makes an even bevel by widening the opening toward the outside. It then makes a little plug of debris which completely fills the door; but because of the bevel, no intrusive beetle or ant can push it in. Thus the caterpillar changes to a helpless pupa in entire safety; and when the little moth issues from the pupa skin, all it has to do is to push its head against the door, and out it falls, and
the recluse is now a creature of the outside world.

Many galls are compound, that is, they are made up of a community of larvae, each in its own cell. The mossy rose-gall is an instance of this. The galls made by mites and aphids are open either below or above the surface of the leaf; the little conical galls on witch-hazel are examples of these. In fact, each gall has its own particular history, which proves a most interesting story if we seek to read it with our own eyes.

LESSON LXXIX

The Gall-dwellers

Leading thought—The galls are protective habitations for the little insects which dwell within them. Each kind of insect makes its own peculiar gall on a certain species of plant, and no one understands just how this is done or why it is so.

Method—Ask the pupils to bring in as many of these galls as possible. Note that some have open doors and some are entirely closed. Cut open a gall and see what sorts of insects are found within it. Place each kind of gall in a tumbler or jar covered with cheesecloth and place where they may be under observation for perhaps several months; note what sort of winged insect comes from each.

Observations — 1.

On what plant or tree did this gall grow? Were there many like it? Did they grow upon the leaf, stem, flower, or fruit? If on the leaf, did they grow upon the petiole or the blade?

2. What is the shape of the little
house? What is its color? Its size? Is it smooth or wrinkled on the outside? Is it covered with fuzz or with spines?

3. Open the gall; is there an insect within it? If so, where is it and how does it look? What is the appearance of the inside of the gall?

4. Is there a cell for the insect at the very center of the gall, or are there many such cells?

5. Has the house an open door? If so, does the door open above or below? Are there more than one insect in the galls with open doors? What sort of insect makes this kind of house?

6. Do you find any insects besides the original gall-maker within it? If so, what are they doing?

7. Of what use are these houses to their little inmates? How do they protect them from enemies? How do they furnish them with food?

8. Do the gall insects live all their lives within the galls or do they change to winged insects and come out into the world? If so, how do they get out?

Supplementary reading—Outdoor Studies, Needham, pages 18 and 37; "Houses of Oak," in Insect Stories, Kellogg; Manual for the Study of Insects.

A green little world
 With me at its heart!
A house grown by magic,
 Of a green stem, a part.

My walls give me food
 And protect me from foes,
I eat at my leisure,
 In safety repose.

My house hath no window,
 'Tis dark as the night!
But I make me a door
 And batten it tight.

And when my wings grow
 I throw wide my door;
And to my green castle
 I return nevermore.

Stem of golden-red, showing the spherical gall above, made by larva of a fly; and the spindle-shaped gall below, made by the caterpillar of a moth.
THE GRASSHOPPER

Teacher's Story

Because the grasshopper affords special facilities for the study of insect structure, it has indeed become a burden to the students in the laboratories of American universities. But in nature-study we must not make anything a burden, least of all the grasshopper, which being such a famous jumper as well as flier, does not long voluntarily burden any object.

Since we naturally select the most salient characteristic of a creature to present first to young pupils, we naturally begin this lesson with the peculiarity which makes this insect a "grasshopper." When any creature has unusually strong hind legs, we may be sure it is a jumper, and the grasshopper shows this peculiarity at first glance. The front legs are short, the middle legs a trifle longer, but the femur of the hind leg is nearly as long as the entire body, and contains many powerful muscles which have the appearance of being braided, because of the way they are attached to the skeleton of the leg; the tibia of the hind leg is long and as stiff as if made of steel. When getting ready to jump the grasshopper lowers the great femur below the level of the closed wings and until the tibia is parallel with it and the entire foot is pressed against the ground.

Grasshopper with parts of external anatomy named.
The pair of double spines at the end of the tibia, just back of the foot, are pressed against the ground like a spiked heel, and the whole attitude of the insect is tense. Then, like a steel spring, the long legs straighten and the insect is propelled high into the air and far away. This is a remarkable example of insect dynamics; and since so many species of birds feed upon the grasshopper, its leaping power is much needed to escape them. However, when the grasshopper makes a journey it uses its wings.

As we watch a grasshopper crawling up the side of a vial or tumbler we can examine its feet with a lens. Between and in front of the claws is an oval pad which clings to the glass, not by air pressure as was once supposed, but by means of microscopic hairs, called tenten hairs, which secrete a sticky fluid. Each foot consists of three segments and a claw; when the insect is quiet, the entire foot rests upon the ground; but when climbing on glass, the toe pads are used.

The grasshopper's face has a droll expression; would that some caricaturist could analyze it! It is a long face, and the compound eyes placed high upon it, give a look of solemnity. The simple eyes can be made out with a lens. There is one just in front of each big eye, and another, like the naughty little girl's curl, is "right in the middle of the forehead." The antennae are short but alert. The two pairs of palpi connected with the mouth-parts are easily seen, likewise the two pairs of jaws, the notched mandibles looking like a pair of nippers. We can see these jaws much better when the insect is eating, which act is done methodically. First, it begins at one edge of a leaf, which it seizes between the front feet so as to hold it firm; it eats by reaching up and cutting downwards, making an even-edged, long hole on the leaf margin; the hole is made deeper by repeating the process. It sometimes makes a hole in the middle of a leaf and bites in any direction, but it prefers to move the jaws downward. While it is feeding, its palpi tap the leaf continually and its whole attitude is one of deep satisfaction. There is an uprolled expression to the compound eyes which reminds us of the way a child looks over the upper edge of its cup while drinking milk. The grasshopper has a preference for tender herbage, but in time of drouth will eat almost any living plant.

Back of the head is a sun-bonnet-shaped piece, bent down at the sides, forming a cover for the thorax. The grasshopper has excellent wings, as efficient as its legs; the upper pair are merely strong, thick, membranous covers, bending down at the sides so as to protect the under wings; these wing-covers are not meant for flying and are held stiff and straight up in the air, during flight. The true wings, when the grasshopper is at rest, are folded lengthwise like a fan beneath the wing-covers; they are strongly veined and circular in shape, giving much surface for beating the air. The grasshoppers' flight is usually swift and short; but in years of famine
Insect Study

they fly high in the air and for long distances, a fact recorded in the Bible regarding the plague of locusts. When they thus appear in vast hordes, they destroy all the vegetation in the region where they settle.

The wings of grasshoppers vary in color, those of the red-legged species being gray, while those of the Carolina locusts are black with yellow edges. The abdomen is segmented, as in all insects, and along the lower side there are two lengthwise sutures or creases which open and shut bellows-like, when the grasshopper breathes. The spiracles or breathing pores can be seen on each segment, just above this suture.

The grasshopper has its ears well protected; to find them, we must lift the wings in order to see the two large sounding disks, one on each side of the first segment of the abdomen. These are larger and much more like ears than are the little ears in the elbows of the katydids.

The singing of the short-horned grasshoppers is a varied performance, each species doing it in its own way. One species makes a most seductive little note by placing the femur and tibia of the hind legs together, and with the hind feet completely off the ground, the legs are moved up and down with great rapidity, giving off a little purr. The wings in this case, do not lift at all. There are other species that make the sound by rubbing the legs against the wing-covers.

The grasshopper makes its toilet thus: It cleans first the hind feet by rubbing them together and also by reaching back and scrubbing them with the middle feet; the big hind femur it polishes with the bent elbow of the second pair of legs. It cleans the middle feet by nibbling and licking them, bending the head far beneath the body in order to do it. It polishes its eyes and face with the front feet, stopping to lick them clean between whiles, and it has a most comical manner of cleaning its antennæ; this is accomplished by tipping the head sidewise, and bending it down so that the antenna of one side rests upon the floor; it then plants the front foot of that side firmly upon the antenna and pulls it slowly backward between the foot and floor.

The grasshopper has some means of defence as well as of escape; it can give a painful nip with its mandibles; and when seized, it emits copiously from the mouth a brownish liquid which is acrid and ill-smelling. This performance interests children, who are wont to seize the insect by its jumping legs and hold it up, commanding it to "chew tobacco."

Grasshoppers are insects with incomplete metamorphosis, which merely means that the baby grasshopper, as soon as it emerges from the egg, is similar in form to its parent except that it has a very large head and a funny little body, and that it has no quiet stage during life. When immature, the under wings or true wings have a position outside of the wing-covers and look like little fans.

The short-horned grasshoppers lay their eggs in oval masses protected by a tough overcoat. The ovipositor of the mother grasshopper is a very efficient tool, and with it she makes a deep hole in the ground, or sometimes in fence rails or other decaying wood; after placing her eggs in such a cavity, she covers the hiding place with a gummy substance so that no
intruders or robbers may work harm to her progeny. Most species of grasshoppers pass the winter in the egg stage; but sometimes we find in early spring the young ones which hatched in the fall, and they seem as spry as if they had not been frozen stiff.

LESSON LXXX

THE RED-LEGGED GRASSHOPPER

Leading thought—The grasshopper feeds upon grass and other herbage and is especially fitted for living in grassy fields. Its color protects it from being seen by its enemies the birds. If attacked, it escapes by long jumps and by flight. It can make long journeys on the wing.

Method—The red-legged grasshopper (M. femur-rubrum) has been selected for this lesson because it is the most common of all grasshoppers, though other species may be used as well. The red-legged locust, or grasshopper, has, as is indicated by its name, the large femur of the hind legs reddish in color. Place the grasshopper under a tumbler and upon a spray of fresh herbage, and allow the pupils to observe it at leisure. It might be well to keep some of the grasshoppers in a cage similar to that described for crickets. When studying the feet, or other parts of the insect requiring close scrutiny, the grasshopper should be placed in a vial so that it may be passed around and observed with a lens. Give the questions a few at a time, and encourage the pupils to study these insects in the field.

Observations—1. Since a grasshopper is such a high jumper, discover if you can how he does this "event." Which pair of legs is the longest? Which the shortest? How long are the femur and tibia of the hind leg compared with the body? What do you think gives the braided appearance to the surface of the hind femur? What is there peculiar about the hind femur? Note the spines at the end of the tibia just behind the foot.

2. Watch the grasshopper prepare to jump and describe the process. How do you think it manages to throw itself so far? If a man were as good a jumper as a grasshopper in comparison to his size, he could jump 300 feet high or 500 feet in distance. Why do you think the grasshopper needs to jump so far?

3. As the grasshopper climbs up the side of a tumbler or vial, look at its feet through a lens and describe them. How many segments are there? Describe the claws. How does it cling to the glass? Describe the little pad between the claws.

4. Look the grasshopper in the face. Where are the compound eyes situated? Can you see the tiny simple eyes like mere dots? How many
are there? Where are they? How long are the antennae? For what are they used?

5. How does a grasshopper eat? Do the jaws move up and down or sidewise? What does the grasshopper eat? How many pairs of palpi can you see connected with the mouth-parts? How are these used when the insect is eating? When there are many grasshoppers, what happens to the crops?

6. What do you see just back of the grasshopper’s head, when looked at from above?

7. Can the grasshopper fly as well as jump? How many pairs of wings has it? Does it use the first pair of wings to fly with? How does it hold them when flying? Where is the lower or hind pair of wings when the grasshopper is walking? How do they differ in shape from the front wings?

8. Note the abdomen. It is made of many rings or segments. Are these rings continuous around the entire body? Where do their breaks occur? Describe the movement of the abdomen as the insect breathes. Can you see the spiracles or breathing pores? Lift the wings, and find the ear on the first segment of the abdomen.

9. If you seize the grasshopper how does it show that it is offended?

10. How does the grasshopper perform its toilet? Describe how it cleans its antennae, face and legs.

11. What becomes of the grasshoppers in the winter? Where are the eggs laid? How can you tell a young from a full-grown grasshopper?

12. Do all grasshoppers have antennae shorter than half the length of their bodies? Do some have antennae longer than their bodies? Where are the long-horned grasshoppers found? Describe how they resemble the katydids in the way they make music and in the position of their ears.

Supplementary reading—Chapters XVI-XVIII in Grasshopper Land, Morley.
DISTANCE, however, lends enchantment to the song of the katydid, for it grates on our nerves as well as on our ears, when at close quarters. The katydid makes his music in a manner similar to that of the cricket but is not, however, so well equipped since he has only one file and only one scraper for playing. As with the meadow grasshoppers and crickets, only the males make the music, the wings of the females being delicate and normally veined at the base. The ears, too, are in the same position as those of the cricket, and may be seen as a black spot in the front elbow. The song is persistent and may last the night long: "Katy did, she didn’t she did," James Whitcomb Riley says, "The katydid is raspimg at the silence," and the word raspimg well describes the note.

The katydid is a beautiful insect, with green, finely veined, leaf-like wing-covers under which is a pair of well developed wings, folded like fans; they resemble in form the long-horned grasshoppers. The common northern species (Cyrtophyllus) is all green above except for the long, delicate, fawn-colored antennae and the brownish fiddle of the male, which consists of a flat triangle just back of the thorax where the wing-covers overlap. Sometimes this region is pale brown and sometimes green, and with the unaided eye we can plainly see the strong cross-vein, bearing the file. The green eyes have darker centers and are not so large as the eyes of the grasshopper. The body is green with white lines below on either side. There is a suture the length of the abdomen in which are placed the spiracles. The insect breathes by sidewise expansion and contraction, and the sutures rhythmically open and shut; when they are open, the spiracles can be seen as black dots. The legs are slender and the hind pair, very long. The feet are provided with two little pads, one on each side of the base of the claw. In the grasshopper there is only one pad which is placed between the two hooks of the claw. The female has a green, sickle-shaped ovipositor at the end of the body. With this she lays her flat, oval eggs, slightly over-lapping in a neat row.

The katydid are almost all dwellers in trees and shrubs; although I have often found our common species upon asters and similar high weeds. The leaf-like wings of these insects are, in form and color, so similar to the leaves that they are very completely hidden. The katydid is rarely discovered except by accident; although when one is singing, it may be approached and ferreted out with the aid of a lantern.

The katydid, when feeding, often holds the leaf or the flower firmly with the front feet, while biting it off like a grazing cow, and if it is tough, chews it industriously with the sidewise working jaws. A katydid will often remain quiet a long time with one long antenna directed forward and the other backward, as if on the lookout for news from the front and
the rear. But when the katydid "cleans up," it does a thorough job. It nibbles its front feet, paying special attention to the pads, meanwhile holding the foot to its mandibles with the aid of the palpi. But once washing is not enough; I have seen a katydid go over the same foot a dozen times in succession, beginning always with the hind spurs of the tibia and nibbling along the tarsus to the claws. It cleans its face with its front foot, drawing it downward over the eye and then licking it clean. It cleans its antenna with its mandibles by beginning at the base and drawing it up in a loop as fast as finished. After watching the process of these lengthy ablutions, we must conclude that the katydid is among the most fastidious members of the insect "four hundred."

References—Manual for Study of Insects, Comstock; American Insects, Kellogg; Ways of Six Footed, Comstock; Grasshopper Land, Morley.
LESSON LXXXI

The Katydid

Leading thought—The katydids resemble the long-horned grasshoppers and the crickets. They live in trees, and the male sings "katy-did" by means of a musical instrument similar to that of the cricket.

Method—Place a katydid in a cricket cage in the schoolroom, giving it fresh leaves or flowers each day, and encouraging the pupils to watch it at recess. It may be placed in a vial and passed around, for close observation. In studying this insect, use the lesson on the red-legged grasshopper and also that on the cricket. These lessons will serve to call the attention of the pupils to the differences and resemblances between the katydid and these two allied insects.

A pair of dusky lovers.
Drawing by Ida Baker.

THE BLACK CRICKETS

Of the insect musicians the cricket is easily the most popular. Long associated with man, as a companion of the hearth and the field, his song touches ever the chords of human experience. Although we, in America, do not have the house-cricket which English poets praise, yet our field-crickets have a liking for warm corners, and will, if encouraged, take up their abode among our hearthstones. The greatest tribute to the music of the cricket is the wide range of human emotion which it expresses. "As merry as a cricket" is a very old saying and is evidence that the cricket's fiddling has ever chimed with the gay moods of dancers and merrymakers. Again, the cricket's song is made an emblem of peace; and again we hear that the cricket's "plaintive cry" is taken as the harbinger of the sere and dying year. From happiness to utter loneliness is the gamut covered by this sympathetic song. Leigh Hunt found him glad and thus addresses him:

"And you, little housekeeper who class
With those who think the candles come too soon,
Loving the fire, and with your tricksome tune
Nick the glad, silent moments as they pass."

WAYS OF THE SIX-FOOTED.
THE BLACK CRICKET

Teacher’s Story

If we wish to become acquainted with these charming little troubadours of the field, we should have a cricket cage with a pair of them within it. They are most companionable, and it is interesting to note how quickly they respond to a musical sound. I had a pair in my room at one time, when I lived very near a cathedral. Almost every time that the bells rang during the night, my cricket would respond with a most vivacious and sympathetic chirping.

The patent leather finish to this cricket’s clothes is of great use; for, although the cricket is an efficient jumper, it is after all, mostly by running between grass blades that it escapes its enemies. If we try to catch one, we realize how slippery it is, and how efficiently it is thus able to slide through the fingers.

The haunts of the cricket are usually sunny; it digs a little cave beneath a stone or clod in some field, where it can have the whole benefit of all the sunshine, when it issues from its door. These crickets cannot fly, since they have no wings under their wing-covers, as do the grass-hoppers. The hind legs have a strong femur, and a short but strong tibia with downward slanting spines along the hind edge, which undoubtedly help the insect in scrambling through the grass. At the end of the tibia, next to the foot, is a rosette of five spines, the two longer ones slanting to meet the foot; these spines give the insect a firm hold, when making ready for its spring. When walking, the cricket places the whole hind foot flat on the ground, but rests only upon the claw and the segment next to it, of the front pairs of feet. The claws have no pads like those of the katydid or grasshopper; the segment of the tarsus next the claw has long spines on the hind feet and shorter spines on the middle and front feet, thus showing that the feet are not made for climbing, but for scrambling along the ground. When getting ready to jump, the cricket crouches so that the tibia and femur of the hind legs are shut together and almost on the ground. The dynamics of the cricket’s leap are well worth studying.
The cricket's features are not so easily made out, because the head is polished and black; the eyes are not so polished as the head, and the simple eyes are present but are discerned with difficulty. The antennæ are longer than the body and very active; there is a globular segment where they join the face. I have not discovered that the crickets are so fastidious about keeping generally clean as are some other insects, but they are always cleaning their antennæ: I have seen a cricket play his wing mandolin lustily and at the same time carefully clean his antennæ; he polished these by putting up a foot and bending the antenna down so that his mouth reached it near the base; he then pulled the antenna through his jaws with great deliberation, nibbling it clean to the very end. The lens reveals to us that the flexibility of the antennæ is due to the fact that they are many jointed. The palpi are easily seen, a large pair above and a smaller pair beneath the "chin." The palpi are used to test food and prove if it be palatable. The crickets are fond of melon or other sweet, juicy fruits, and by putting such food into the cage we can see them bite out pieces with their sidewise working jaws, chewing the toothsome morsel with gusto. They take hold of the substance they are eating with the front feet as if to make sure of it.

The wing-covers of the cricket are bent down at the sides at right angles, like a box cover. The wing-covers are much shorter than the abdomen and beneath them are vestiges of wings, which are never used. The male has larger wing-covers than the female, and they are veined in a peculiar scroll pattern. This veining seems to be a framework for the purpose of making a sounding board of the wing membrane, by stretching it out as a drum-head is stretched. Near the base of the wing-cover, there is a heavy cross-vein covered with transverse ridges, which is called the file; on the inner edge of the same wing, near the base, is a hardened portion called the scraper. When he makes his cry, the cricket lifts his wing-covers at an angle of forty-five degrees and draws the scraper of the under wing against the file of the overlapping one; lest his musical apparatus become worn out, he can change by putting the other wing-cover above. The wing-covers are excellent sounding boards and they quiver as the note is made, setting the air in vibration, and sending the sound a long distance. The female cricket's wing-covers are more normal in venation; and she may always be distinguished from her spouse by the long sword-like ovipositor at the end of her body; this she thrusts into the ground when she lays her eggs, thus placing them where they will remain safely protected during the winter. Both sexes have a pair of "tail feathers," as the children call them, which are known as the cerci (sing. cerca) and are fleshy prongs at the end of the abdomen.
There would be no use of the cricket's playing his mandolin if there were not an appreciative ear to listen to his music. This ear is placed most conveniently in the tibia of the front leg, so that the crickets literally hear with their elbows, as do the katydids and the meadow grasshoppers. The ear is easily seen with the naked eye as a little white, disklike spot.

The chirp of the cricket is, in literature, usually associated with the coming of autumn; but the careful listener may hear it in early summer, although the song is not then so insistent as later in the season. He usually commences singing in the afternoon and keeps it up periodically all night. I have always been an admirer of the manly, dignified methods of this little "minnesinger," who does not wander abroad to seek his lady love but stands sturdily at his own gate, playing his mandolin the best he is able; he has faith that his sable sweetheart is not far away, and that if she likes his song she will come to him of her own free will. The cricket is ever a lover of warmth and his mandolin gets out of tune soon after the evenings become frosty. He is a jealous musician. When he hears the note of a rival, he at once "bristles up," lifting his wings at a higher angle and giving off a sharp militant note. If the two rivals come in sight of each other, there is a fierce duel. They rush at each other with wide open jaws, and fight until one is conquered and retreats, often minus an antenna, cerca, or even a leg. The cricket's note has a wide range of expression. When waiting for his lady love, he keeps up a constant droning; if he hears his rival, the tone is sharp and defiant; but as the object of his affection approaches, the music changes to a seductive whispering, even having in it an uncertain quiver, as if his feelings were too strong for utterance.

LESSON LXXXII

THE BLACK CRICKET

Leading thought—The crickets are among the most famous of the insect musicians. They live in the fields under stones and in burrows, and feed upon grass and clover. As with the song birds, the male only makes music; he has his wing-covers developed into a mandolin or violin, which he plays to attract his mate and also for his own pleasure.

Method—Make some cricket cages as follows: Take a small flower-pot and plant in it a root of fresh grass or clover. Place over this and press well into the soil a lantern or lamp chimney. Cover the top with mosquito netting. Place the pot in its saucer, so that it may be watered by keeping the saucer filled. Ask the pupils to collect some crickets. In each cage, place a male and one or more females, the latter being readily distinguished by the long ovipositors. Place the cages in a sunny window, where the pupils may
observe them at recess, and ask for the following observations. In studying the cricket closely, it may be well to put one in a vial and pass it around. In observing the crickets eat, it is well to give them a piece of sweet apple or melon rind, as they are very fond of pulpy fruits.

Observations—1. Is the covering of the cricket shining, like black patent leather, or is it dull? What portions are dull? Of what use do you think it is to the cricket to be so smoothly polished?

2. Where did you find the crickets? When you tried to catch them, how did they act? Did they fly like grasshoppers or did they run and leap?

3. Look carefully at the cricket’s legs. Which is the largest of the three pairs? Of what use are these strong legs? Look carefully at the tibia of the hind leg. Can you see the strong spines at the end, just behind the foot or tarsus? Watch the cricket jump and see if you can discover the use of these spines. How many joints in the tarsus? Has the cricket a pad like the grasshopper’s between its claws? When the cricket walks or jumps does it walk on all the tarsus of each pair of legs?

4. Study the cricket’s head. Can you see the eyes? Describe the antenna—their color, length, and the way they are used. Watch the cricket clean its antennæ and describe the process. Can you see the little feelers, or palpi, connected with the mouth? How many are there? How does it use these feelers in tasting food before it eats? Watch the cricket eat, and see whether you can tell whether its mouth is made for biting or sucking.

5. Study the wings. Are the wings of the mother cricket the same size and shape as those of her mate? How do they differ? Does the cricket have any wings under these front wings, as the grasshopper does? Note the cricket when he is playing his wing mandolin to attract his mate. How does he make the noise? Can you see the wings vibrate? Ask your teacher to show you a picture of the musical wings of the cricket, or to show you the wings themselves under the microscope, so that you may see how the music is made.

6. Why does the mother cricket need such a long ovipositor? Where does she put her eggs in the fall to keep them safe until spring?

7. Look in the tibia, or elbow, of the front leg for a little white spot. What do you suppose this is? Are there any white spots like it on the other legs? Ask your teacher to tell you what this is.

8. Can you find the homes of the crickets in the fields? Do the black crickets chirp in the day-time or after dark? Do they chirp in cold or windy weather, or only when the sun shines?

Supplementary Reading—Grasshopper Land, Morley, Chapter XIX.

CRICKET SONG.

Welcome with thy clicking, cricket!
Clicking songs of sober mirth;
Autumn, stripping field and thicket,
Brings thee to my hearth,
Where thy clicking shrills and quickens,
While the mist of twilight thickens.
* * * * * * * * * *
No annoy, good-humored cricket,
With thy trills is ever blent;
Spleen of mine, how dost thou trick it
To a calm content?
So, by thicket, hearth, or wicket,
Click thy little lifetime, cricket!
Bayard Taylor.
THE SNOWY TREE-CRICKET

Teacher's Story

HIS is a slim, ghost-like cricket. It is pale green, almost white in color, and about three-fourths of an inch long. Its long, slender hind legs show that it is a good jumper. Its long antennae, living threads, pale gray in color, join the head with amber globe-like segments. The pale eyes have a darker center and the palpi are very long. The male has the wing-covers shaped and veined like those of the black cricket, but they are not so broad and are whitish and very delicate. The wings beneath are wide, for these crickets can fly. The female has a long, sword-like ovipositor.

The snowy tree-cricket, like its relatives, spends much time at its toilet. It whips the front foot over an antenna and brings the base of the latter to the mandibles with the palpi and then cleans it carefully to the very tip. It washes its face with the front foot, always with a downward movement. If the hind foot becomes entangled in anything it first tries to kick it clean, and then drawing it beneath the body, bends the head so as to reach it with the mandibles and nibbles it clean. The middle foot it also thrusts beneath the body, bringing it forward between the front legs for cleaning. But when cleaning its front feet, the snowy tree-cricket puts on airs; it lifts the elbow high and draws the foot through the mouth with a gesture very like that of a young lady with a seal ring on her little finger, holding the ornate member out from its companions as if it were stiff with a consciousness of its own importance.

There are two common species of the snowy tree-crickets which can hardly be separated except by specialists or by watching their habits. One is called "the whistler" and lives on low shrubs or grass; it gives a clear, soft, prolonged, unbroken note. The other is called "the fiddler" and lives on shrubs and in trees and vines. Its note is a pianissimo performance of the katydid's song; it is delightful, rhythmic and sleep-inspiring; it begins in the late afternoon and continues all night until the early, cold hours of the approaching dawn. The vivacity of the music depends upon the temperature, as the notes are given much more rapidly during the hot nights.

"So far as we know, this snowy tree-cricket is the only one of the insect musicians that seems conscious of the fact that he belongs to an orchestra. If you listen on a September evening, you will hear the first player begin; soon another will join, but not in harmony at first. For some time there may be a see-saw of accented and unaccented notes; but after a while the two will be in unison; perhaps not, however, until many more players have joined

Eggs of snowy tree-cricket, laid in raspberry cane.

After C. V. Riley.
the concert. When the rhythmical beat is once established it is in as perfect time as if governed by the baton of a Damrosch or a Thomas. The throbbing of the cricket heart of September, it has been fitly named. Sometimes an injudicious player joins the chorus at the wrong beat, but he soon discovers his error and rectifies it. Sometimes, also, late at night, one part of the orchestra in an orchard gets out of time with the majority, and discord may continue for some moments, as if the players were too cold and too sleepy to pay good attention. This delectable concert begins usually in the late afternoons and continues without ceasing until just before dawn the next morning. Many times I have heard the close of the concert; with the "wee sma" hours the rhythmic beat becomes slower; toward dawn there is a falling off in the number of players; the beat is still slower, and the notes are hoarse, as if the fiddlers were tired and cold; finally, when only two or three are left the music stops abruptly." (Ways of the Six-Footed, Comstock.)

The lesson on this cricket may be adapted from that on the black cricket.

THE COCKROACH

Teacher's Story

OCKROACHES in our kitchens are undoubtedly an unmitigated nuisance, and yet, as in many other instances, when we come to consider the individual cockroach, we find him an interesting fellow and exceedingly well adapted for living in our kitchens despite us.

In shape, the cockroach is flat, and is thus well adapted to slide beneath utensils and into crevices and corners. Its covering is smooth and polished like patent leather, and this makes it slippery and enables it to get into food without becoming clogged by the adherence of any sticky substance. The antennae are very long and flexible and can be bent in any direction. They may be placed far forward to touch things which the insect is approaching, or may be placed over the back in order to be out of the way. They are like graceful, living threads, and the cockroach tests its whole environment with their aid. The mouth has two pairs of palpi or feelers, one of which is very long and noticeable; these are kept in constant motion as if to test the appetizing qualities of food. The mouth-parts are provided with jaws for biting and, like all insect jaws, these work sidewise instead of up and down. The eyes are black but not prominent or large, and seem to be merely a part of the sleek, polished head-covering.

Some species of cockroaches have wings, and some do not. Those which have wings, have the upper pair thickened and used for wing-
The under pair are thinner and are laid in plaits like a fan. The wing-covers are as polished as the body and quite as successful in shedding dirt.

The legs are armed with long spines which are very noticeable and might prove to be a disadvantage in accumulating filth; but they are polished also; and too, this insect spends much time at its toilet.

Cockroaches run "like a streak", children say; so speedily, indeed, do they go that they escape our notice, although we may be looking directly at them. This celerity in vanishing, saves many a cockroach from being crushed by an avenging foot.

When making its toilet, the cockroach draws its long antenna through its jaws as if it were a whiplash, beginning at the base and finishing at the tip. It cleans each leg by beginning near the body and so stroking downward the long spines which seem to shut against the leg. It nibbles its feet clean to the very claws, and scrubs its head vigorously with the front femur.

The cockroach's eggs are laid in a mass enclosed in a pod-shaped covering, which is waterproof and polished and protects its contents from dampness. When the cockroaches, or the croton bugs, as the small introduced species of cockroach is called, once become established in a house, the only way to get rid of them is to fumigate the kitchen with carbon bisulphide which is a dangerous performance and should be done only by an expert.

Lesson LXXXIII

The Cockroach

Leading thought—The cockroach is adapted for living in crevices, and although its haunts may be anything but clean, the cockroach keeps itself quite clean. The American species live in fields and woods and under stones and sticks and only occasionally venture into dwellings. The species that infest our kitchens and water-pipes are European.

Method—Place a cockroach in a vial with bread, potato or some other food, cork the vial, and pass it around so that the children may observe the prisoner at their leisure.

Observations—1. What is the general shape of the cockroach? Why is this an advantage? What is the texture of its covering? Why is this an advantage?

2. Describe the antennae and the way they are used. Note the two little pairs of feelers at the mouth. If possible, see how they are used when the cockroach is inspecting something to eat. Can you see whether its mouth is fitted for biting, lapping or sucking its food?
3. Note the eyes. Are they as large and prominent as those of the bees or butterflies?
4. Has this cockroach wings? If so, how many and what are they like? Note two little organs at the end of the body? These are the cerci, like those of the crickets.
5. Describe the general appearance of the cockroach's legs, and tell what you think about its ability as a runner.
6. Note how the cockroach cleans itself and how completely and carefully this act is performed. Have you ever seen cockroach's eggs? If so, describe them.
7. How can you get rid of cockroaches if they invade your kitchen?

LESSON LXXXIV

HOW TO MAKE AN AQUARIUM

The schoolroom aquarium may be a very simple affair and still be effective. Almost any glass receptacle will do, glass being chosen because of its transparency, so that the life within may be observed. Tumblers, jelly tumblers, fruit jars, butter jars, candy jars and battery jars are all available for aquaria. The tumblers are especially recommended for observing the habits of aquatic insects.

To make an aquarium: 1. Place in the jar a layer of sand an inch or more in depth.
2. In this sand plant the water plants which you find growing under water in a pond or stream; the plants most available are Water-weed, Bladderwort, Water Starwort, Watercress, Stoneworts, Frog-spittle or Water-silk.
3. Place on top a layer of small stones or gravel; this is to hold the plants in place.
4. Tip the jar a little and pour in very gently at one side water taken from a pond or stream. Fill the jar to within two or three inches of the top; if it be a jelly tumbler, fill to within an inch of the top.
5. Let it settle.
6. Place it in a window which does not get too direct sunlight. A north window is the best place; if there is no north window to the school room, place it far enough at one side of some other window so that it will not receive too much sunlight.
7. To get living creatures for the aquarium use a dip-net, which is made like a shallow, insect net.
8. Dip deep into the edges of the pond and be sure to bring up some of the leaves and mud, for it is in these that the little water animals live.
9. As fast as dipped up, these should be placed in a pail of water, so that they may be carried to the schoolroom.
10. In introducing the water animals into the aquarium it is well to put but a few in each jar.

The care of the aquarium—Care should be taken to preserve the plant life in the aquarium, as the plants are necessary to the life of the animals. They not only supply the food, but they give off oxygen which the animals
need for breathing, and they also take up from the water the poisonous carbonic acid gas given off from the bodies of the animals.

1. The aquarium should be kept where there is a free circulation of air.

2. If necessary to cover the aquarium to prevent the insects, like the water boatmen and water beetles, from escaping, tie over it a bit of mosquito netting, or lay upon the top a little square of wire netting used for window screens.

3. The temperature should be kept rather cool; it is better that the water of the aquarium should not be warmer than 50 deg. Fahrenheit, but this is not always possible in the schoolroom.

4. If any insects or animals die in the aquarium they should be removed at once, as the decomposing bodies render the water foul.

5. To feed the animals that live upon other animals take a bit of raw beef, tie a string to it and drop it in, leaving the free end of the string outside of the jar. After it has been in one day, pull it out; for if it remains longer it will make the water foul.

6. As the water evaporates it should be replaced with water from the pond.

References—The Fresh Water Aquarium, Eggeling and Ehrenberg; Insect Life, Comstock; The Brook Book, Miller; Nature Study and Life, Hodge; The Home Aquarium, How to Care for It, Eugene Smith.

A humble, but useful, aquarium.

An inexpensive and durable aquarium.
THE DRAGON-FLIES AND DAMSEL-FLIES

Teacher's Story

A POND without dragon-flies darting above it, or without the exquisitely iridescent damsel-flies clinging to the leaves of its border would be a lonely place indeed. As one watches these beautiful insects, one wonders at the absurd errors which have crept into popular credence about them. Who could be so silly as to believe that they could sew up ears or that they could bring dead snakes to life! The queer names of these insects illustrate the prejudices of the ignorant—devil's darning needles, snake doctors, snake feeders, etc. Despite all this slander, the dragon-flies remain not only entirely harmless to man, but in reality are his friends and allies in waging war against flies and mosquitoes; they are especially valuable in battling mosquitoes since the nymphs, or young, of the dragon-fly, take the wrigglers in the water, and the adults, on swiftest wings, take the mosquitoes while hovering over ponds laying their eggs.

The ten-spot.
From Outdoor Studies, Needham.

The poets have been lavish in their attention to these interesting insects and have paid them delightful tributes. Riley says:

"Till the dragon fly, in light gauzy armor burnished bright,
Came tilting down the waters in a wild, bewildered flight."

While Tennyson drew inspiration for one of his most beautiful poems from the two stages of dragon-fly life. But perhaps Lowell in that exquisite poem, "The Fountain of Youth," gives us the perfect description of these insects:

In summer-noon flushes
When all the wood hushes,
Blue dragon-flies knitting
To and fro in the sun,
With sidelong jerk flitting,
Sink down on the rushes,
And, motionless sitting,
Hear it bubble and run,
Hear its low inward singing,
With level wings swinging
On green tasselled rushes,
To dream in the sun.
It is while we, ourselves, are dreaming in the sun by the margin of some pond, that these swift children of the air seem but a natural part of the dream. Yet if we waken to note them more closely, we find many things very real to interest us. First, they are truly children of the sun, and if some cloud throws its shadow on the waters for some moments, the dragon-flies disappear as if they wore the invisible cloak of the fairy tale. Only a few of the common species fly alike in shade and sunshine, and early and late. The best known of these is the big, green skimmer, which does not care so much for ponds, but darts over fields and even dashes into our houses, now and then. Probably it is this species which has started all of the dragon-fly slander, for it is full of curiosity, and will hold itself on wings whirring too rapidly to even make a blur, while it examines our faces or inspects the pictures or furniture or other objects which attract it.

Another thing we may note when dreaming by the pond is that the larger species of dragon-flies keep to the higher regions above the water, while the smaller species and the damsel-flies flit near its surface. Well may the smaller species keep below their fierce kindred, otherwise they would surely be utilized to sate their hunger, for these insects are well named dragons, and dragons do not stop to inquire whether their victims are relatives or not. It is when they are resting, that the dragon and damsel-flies reveal their most noticeable differences. The dragon-fly extends both wings as if in flight while it basks in the sun or rests in the shadow. There is a big, white-bodied species called the whitetail which slants its wings forward and down when it rests; but the damsel-flies fold their wings together over the back when resting. The damsel-flies have more brilliantly colored bodies than do the dragon-flies, many of them being iridescent green or coppery; they are more slender and delicate in form. The damsel-fly has eyes which are so placed on the sides of the head as to make it look like a cross on the front of the body fastened to the slender neck, and with an eye at the tip of each arm. There are very many species of dragon and damsel-flies, but they all have the same general habits.

The dragon-fly nymphs are the ogres of the pond or stream. To anyone unused to them and their ways in the aquarium, there is a surprise in store, so ferocious are they in their attacks upon creatures twice
their size. The dragon-fly's eggs are laid in the water; in some instances they are simply dropped and sink to the bottom; but in the case of damsel-flies, the mother punctures the stems of aquatic plants and places the eggs within them. The nymph in no wise resembles the parent dragon-fly. It is a dingy little creature, with six queer, spider-like legs and no wings; although there are four little wing-pads extending down its back, which encase the growing wings. It may remain hidden in the rubbish at the bottom of the pond or may cling to water weeds at the sides, for different species have different habits. But in them all we find a most amazing lower lip. This is so large that it covers the lower part of the face like a mask, and when folded back reaches down between the front legs. It is in reality a grappling organ with hooks and spines for holding prey; it is hinged in such a manner that it can be thrust out far beyond the head to seize some insect, unsuspecting of danger. These nymphs move so slowly and look so much like their background, that they are always practically in ambush awaiting their victims.

The breathing of the dragon-fly nymphs is peculiar; there is an enlargement of the rear end of the alimentary canal, in the walls of which trachee or breathing tubes extend in all directions. The nymph draws water into this cavity and then expels it, thus bathing the trachee with the air mixed with water and purifying the air within them. Expelling the water so forcibly, propels the nymph ahead, so this act serves as a method of swimming as well as of breathing. Damsel-fly nymphs, on the other hand, have at the rear end of the body, three long, plate-like gills, each ramified with trachee.

Nymphs grow by shedding the skin as fast as it becomes too small; and when finally ready to emerge, they crawl up on some object out of the water, and molt for the last time, and are thereafter swift creatures of the air.

LESSON LXXXV

THE DRAGON-FLIES AND DAMSEL-FLIES

Leading thought—The dragon-flies are among the swiftest of all winged creatures and their rapid, darting flight enables them to hawk their prey, which consists of other flying insects. Their first stages are passed in the bottoms of ponds where they feed voraciously on aquatic creatures. The dragon-flies are beneficial to us because, when very young and when full grown, they feed largely upon mosquitoes.
Method—The work of observing the habits of adult dragon-flies should be largely done in the field during late summer and early autumn. The points for observation should be given the pupils for summer vacation use, and the results placed in the field note-book.

The nymphs may be studied in the spring, when getting material for the aquarium. April and May are the best months for securing them. They are collected by using a dip-net, and are found in the bottoms of reedy ponds or along the edges of slow-flowing streams. These nymphs are so voracious that they cannot be trusted in the aquarium with other insects; each must be kept by itself. They may be fed by placing other water insects in the aquarium with them or by giving them pieces of fresh meat. In the latter case, tie the meat to a thread so that it may be removed after a few hours, if not eaten, since it soon renders the water foul.

The dragon-fly aquarium should have sand at the bottom and some water weeds planted in it, and there should be some object in it which extends above the surface of the water which the nymphs, when ready to change to adults, can climb upon while they are shedding the last nymphal skin, and spreading their new wings.

Observations on the young of dragon-flies—1. Where did you find these insects? Were they at the bottom of the pond or along the edges among the water weeds?

2. Are there any plume-like gills at the end of the body? If so, how many? Are these plate-like gills used for swimming? If there are three of these, which is the longer? Do you know whether the nymphs with these long gills develop into dragon or into damsel-flies?

3. If there are no plume-like gills at the end of the body, how do the insects move? Can they swim? What is the general color of the body? Explain how this color protects them from observation? What enemies does it protect them from?

4. Are the eyes large? Can you see the little wing-pads on the back in which the wings are developing? Are the antennæ long?

5. Observe how the nymphs of both dragon and damsel-flies seize their prey. Describe the great lower lip when extended for prey. How does it look when folded up?

6. Can you see how a nymph without the plume-like gills breathes? Notice if the water is drawn into the rear end of the body and then expelled. Does this process help the insect in swimming?

7. When the dragon or damsel-fly nymph has reached its full growth, where does it go to change to the winged form? How does this change take place? Look on the rushes and reeds along the pond margin, and see
if you can find the empty nymph skins from which the adults emerged. Where is the opening in them?

Observations on the adult dragon-flies—1. Catch a dragon-fly, place it under a tumbler and see how it is fitted for life in the air. Which is the widest part of its body? Note the size of the eyes compared with the remainder of the head. Do they almost meet at the top of the head? How far do they extend down the sides of the head? Why does the dragon-fly need such large eyes? Why does a creature with such eyes not need long antennae? Can you see the dragon-fly's antennae? Look with a lens at the little, swollen triangle between the place where the two eyes join and the forehead; can you see the little, simple eyes? Can you see the mouth-parts?

2. Next to the head, which is the widest and strongest part of the body? Why does the thorax need to be so big and strong? Study the wings. How do the hind wings differ in shape from the front wings? How is the thin membrane of the wings made strong? Are the wings spotted or colored? If so, how? Can you see if the wings are folded along the front edges? Does this give strength to the part of the wing which cuts the air? Take a piece of writing paper and see how easily it bends; fold it two or three times like a fan and note how much stiffer it is. Is it this principle which strengthens the dragon-fly's wings? Why do these wings need to be strong?

3. Is the dragon-fly's abdomen as wide as the front part of the body? What help is it to the insect when flying to have such a long abdomen?

Outline for field notes—Go to a pond or sluggish stream when the sun is shining, preferably at midday, and note as far as possible the following things:

1. Do you see dragon-flies darting over the pond? Describe their flight. They are hunting flies and mosquitoes and other insects on the wing; note how they do it. If the sky becomes cloudy, can you see the dragon-flies hunting? In looking over a pond where there are many dragon-flies darting about, do the larger species fly higher than the smaller ones?

2. Note the way the dragon-flies hold their wings when they are resting. Do they rest with their wings folded together over the abdomen or are they extended out at an angle to the abdomen? Do you know how this difference in attitude of resting determines one difference between the damsel-flies and the dragon-flies?

3. The damsel-flies are those which hold their wings folded above the back when resting. Are these as large and strong-bodied as the dragon-flies? Are their bodies more brilliantly colored? How does the shape of the head and eyes differ from those of the dragon-flies? How many different colored damsel-flies can you find?

4. Do you see some dragon-flies dipping down in the water as they fly? If so, they are laying their eggs. Note if you find others clinging to reeds or other plants with the abdomen thrust below the surface of the water. If so, these are inserting their eggs into the stem of the plant.

Supplementary reading—Outdoor Studies, Needham, p. 54; "The Dragon of Lagunita" in Insect Stories, Kellogg.
PEOPLE are to be pitied who have never tried to fathom the mysteries of the bottom of brook or pond. Just to lie flat, face downward, and watch for a time all that happens down there in that water world, is far more interesting than witnessing any play ever given at matinee. At first one sees nothing, since all the swift-moving creatures have whisked out of sight, because they have learned to be shy of moving shadows; but soon the crayfish thrusts out his boxing gloves from some crevice, then a school of tiny minnows "stay their wavy bodies 'gainst the stream;" and then something strange happens! A bit of rubbish on the bottom of the brook walks off. Perhaps it is a dream, or we are under the enchantment of the water witches! But no, there goes another, and now a little bundle of sand and pebbles takes unto itself legs. These mysteries can only be solved with a dip-net and a pail half filled with water, in which we may carry home the treasure trove.

When we finally lodge our catch in the aquarium jar, our mysterious moving sticks and stones resolve themselves into little houses built in various fashions, and each containing one inmate. Some of the houses are made of sticks fastened together lengthwise; some are built like log cabins, crosswise; some consist simply of a hollow stem cut a convenient length; and some are made of sand and pebbles, and one, the liveliest of all, is a little tube made of bits of rubbish and silk spun in a spiral, making a little cornucopia.

On the whole, the species which live in the log cabins are the most convenient to study. Whatever the shape of the case or house, it has a very tough lining of silk, which is smooth within, and forms the framework to which the sticks and stones are fastened. These little dwellings always have a front door and a back door. Out of the front door may protrude the dark-colored head followed by two dark segments and six perfectly active legs, the front pair being so much shorter than the other two pairs that they look almost like mouth palpi. In time of utter peace, more of the little hermit
is thrust out and we see the hind segment of the thorax which is whitish, and behind this the abdomen of nine segments. At the sides of the abdomen, and apparently between the segments, are little tassels of short, white thread-like gills. These are filled with air, impure from contact with the blood, and which exchanges its impurities speedily for the oxygen from the air which is mixed with the water. Water is kept flowing in at the front door of the cabin, over the gills and out at the back door, by the rhythmic movement of the body of the little hermit, and thus a supply of oxygen is steadily maintained.

The caddis-worm is not grown fast to its case as is the snail to its shell. If we hold down with forceps a case in which the occupant is wrong side up, after a few struggles to turn itself over, case and all, it will turn over within the case. It keeps its hold upon the case by two forward-curving hooks, one on each side of the tip of the rear segment. These hooks are inserted in the tough silk and hold fast. It also has on top of the first segment of the abdomen a tubercle, which may be extended at will; this helps to brace the larva in its stronghold, and also permits the water to flow freely around the insect. So the little hermit is entrenched in its cell at both ends. When the log-cabin species wishes to swim, it pushes almost its entire body out of the case, thrusts back the head, spreads the legs wide apart, and then doubles up, thus moving through the water spasmodically, in a manner that reminds us of the crayfish’s swimming except that the caddis-worm goes head first. This log cabin species can turn its case over dexterously by movements of its legs.

The front legs of the caddis-worm are so much shorter than the other two pairs that they look like palpi, and their use is to hold close to the jaws bits of food, which are being eaten. The other legs are used for this too if the little legs cannot manage it; perhaps also these short front legs help hold the bits of building material in place while the web is woven to hold it there. The caddis-worm, like the true caterpillars, has the opening of the silk gland near the lower lip. The food of most caddis-worms is vegetable, usually the various species of water plants; but there are some species which are carnivorous, like the net-builder, which is a fisherman.

The caddis-worm case protects its inmate in two ways: First, from the sight of the enemy, and second, from its jaws. A fish comes along and sees a nice white worm and darts after it, only to find a bundle of unappetizing sticks where the worm was. All of the hungry predatory creatures of the pond and stream would be glad to
get the caddis-worm, if they knew where it went. Sometimes caddis-worm cases have been found in the stomachs of fishes; perhaps they serve as fish breakfast-food.

While it is difficult to see the exact operation of building the caddis-worm house, the general proceeding may be readily observed. Take a vigorous half-grown larva, tear off part of the sticks and bits of leaves that make the log cabin, and then place the little builder in a tumbler with half an inch of water at the bottom, in which are many bright flower petals cut into strips, fit for caddis lumber. In a few hours the little house will look like a blossom with several rows of bright petals set around its doorway.

When the caddis-worm gets ready to pupate, it fastens its case to some object in the water and then closes its front and back doors. Different species accomplish this in different ways; some spin and fasten a silken covering over the doors; often this is in the form of a pretty grating; others simply fasten the material of which the case is made across the door. But though the door be shut, it is so arranged as to allow the water to flow through and to bring oxygen to the thread-like gills, which are on the pupa as well as on the larva. When ready to emerge, the pupa crawls out of its case and climbs to some object above the water, sheds its pupa skin, and the adult insect flies off. In some species, living in swift water, the adult issues directly from the water, its wings expanding as soon as touched by the air.

Caddis-flies are familiar to us all even if we do not know them by name. They are night fliers and flame worshipers. Their parchment-like or leathery wings are folded like a roof over the back, and from the side the caddis-fly appears as an elongated triangle with unequal sides. The front wings are long and the hind ones shorter and wider; the antennæ are long and threadlike and always waving about for impressions; the eyes are round and beadlike; the tarsi, or feet, are long and these insects have an awkward way of walking on the entire tarsus which gives them an appearance of kneeling. Most of the species are dull-colored, brownish or gray, the entire insect often being of one color. Caddis-flies would not be so fond of burning themselves in lamps if they had the human sense of smell, for the stench they make when scorching is nauseat-
ing. The mother caddis-flies lay their eggs in the water. Perhaps some species drop the eggs in when hovering above, but in some cases the insect must make a diving bell of her wings and go down into the water to place her eggs securely. The wings are covered with hairs and not with scales, and therefore they are better fitted for diving than would be those of the moth. I have seen caddis-flies swim vigorously.

References—Aquatic Insects, Miall; Manual for the Study of Insects, Comstock.

A spiral ribbon caddis-worm case. The inmate of this case is a rapid swimmer.
Photo by J. T. Lloyd.

Case and caddis-worm.

LESSON LXXXVI

The Caddis-worms and Caddis-flies

Leading thought—The caddis-worms build around themselves little houses out of bits of sticks, leaves or stones. They crawl about on the bottom of the pond or stream, protected from sight, and able to withdraw into their houses when attacked. The adult of the caddis-worm is a winged moth-like creature which comes in numbers to the light at night.

Method—with a dip-net the caddis-worms may be captured and then may be placed in the school aquarium. Duckweed and other water plants should be kept growing in the aquarium. The log cabin species is best for this study, because it lives in stagnant water and will therefore thrive in an aquarium.

Observations—1. Where do you find the caddis-worms? Can you see them easily on the bottom of the stream or pond? Why?

2. Of what are the caddis-worm houses made? How many kinds have you ever found? How many kinds of materials can you find on one case? Describe one as exactly as possible. Find an empty case and describe it inside. Why is it so smooth inside? How is it made so smooth? Are all the cases the same size?

3. What does the caddis-worm do when it wishes to walk around? What is the color of the head and the two segments back of it? What is the color of the body? Why is this difference of color between the head and body protective? Is the caddis-worm grown fast to its case, as the turtle is to its shell?

4. Note the legs. Which is the shorter pair? How many pairs? What is the use of the legs so much shorter than the others? If the caddis-worm case happens to be wrong side up, how does it turn over?

5. When it wishes to come to the surface or swim, what does the caddis-worm do? When reaching far out of its case does it ever lose its hold? How does it hold on? Pull the caddis-worm out of its case and see the hooks at the end of the body with which it holds fast.

6. How does the caddis-worm breathe? When it reaches far out of its case, note the breathing gills. Describe them. Can you see how many
there are on the segments? How is the blood purified through these gills?

7. What are the caddis-worm's enemies? How does it escape them? Touch one when it is walking, what does it do?

8. On top of the first segment of the abdomen is a tubercle. Do you suppose that this helps to hold the caddis-worm in its case?

10. How does the caddis-worm build its case? Watch one when it makes an addition to its case, and describe all that you can see.

11. Can you find any of the cases with the front and back doors closed? How are they closed? Open one and see if there is a pupa within it. Can you see the growing wings, antennae and legs? Has it breathing filaments like the larva? Cover the aquarium with mosquito netting so as to get all the moths which emerge. See if you can discover how the pupa changes into a caddis-fly.

12. How does the caddis-fly fold its wings? What is the general shape of the insect when seen from the side with wings closed? What is the texture of the wings? How many wings are there? Which pair is the longer?

13. Describe the eyes. The antennae. Does the caddis-fly walk on its toes, or on its complete foot?

14. Examine the moths which come around the lights at night in the spring and summer. Can you tell the caddis-flies from other insects? Do they dash into the light? Do they seem anxious to burn themselves?

Supplementary reading—"A Little Fisherman," Ways of the Six-Footed, Comstock.

*Spiral case of caddis-worm made of small pebbles and sand.

Little brook, so simple so unassuming—and yet how many things love thee!
Lo! Sun and Moon look down and glass themselves in thy waters.
And the trout balances itself hour-long against the stream, watching for its prey; or retires under a stone to rest.
And the water-rats nibble off the willow leaves and carry them below the wave to their nests—or sit on a dry stone to trim their whiskers.
And the May-fly practices for the millionth time the miracle of the resurrection, floating up an ungainly grub from the mud below, and in an instant, in the twinkling of an eye (even from the jaws of the baffled trout) emerging, an aerial fairy with pearl-green wings.
And the caddis-fly from its quaint disguise likewise emerges.
And the prick-eared earth-people, the rabbits, in the stillness of early morning play beside thee undisturbed, while the level sunbeams yet grope through the dewy grass.
And the squirrel on a tree-root—its tail stretched far behind—leans forward to kiss thee,
Little brook, for so many things love thee.

Edward Carpenter.
THE APHIDS, OR PLANT-LICE

Teacher's Story

KNOW of no more diverting occupation than watching a colony of aphids through a lens; these insects are the most helpless and amiable little ninnies in the whole insect world; and they look the part, probably because their eyes, so large and wide apart, seem so innocent and wondering. The usual color of aphids is green. As they feed upon leaves, this color protects them from sight; but there are many species which are otherwise colored, and some have most bizarre and striking ornamentations. In looking along an infested leaf stalk, we see them in all stages and positions. One may have thrust its beak to the hilt in a plant stem, and is so satisfied and absorbed in sucking the juice that its hind feet are lifted high in the air and its antennæ curved backward, making altogether a gesture which seems an adequate expression of bliss; another may conclude to seek a new well, and pulls up its sucking tube, folding it back underneath the body so it will be out of the way, and walks off slowly on its six rather stiff legs; when thus moving, it thrusts the antennæ forward, patting its pathway to insure safety. Perhaps this pathway may lead over other aphids which are feeding, but this does not deter the traveler nor turn it aside; over the backs of the obstructionists it crawls, at which the disturbed ones kick the intruder with both hind legs; it is not a vicious kick but a push rather, which says, "This seat reserved, please!"

It is comical to see a row of them sucking a plant stem for "dear life," the heads all in the same direction, and they packed in and around each other as if there were no other plants in the world to give them room, the little ones wedged in between the big ones, until sometimes some of them are obliged to rest their hind legs on the antennæ of the neighbors next behind.

Aphids are born for food for other creatures—they are simply little machines for making sap into honey-dew, which they produce from the alimentary canal for the deflection of ants; they are, in fact, merely little animated drops of sap on legs. How helpless they are when attacked by any one of their many enemies! All they do, when they are seized, is to claw the air with their six impotent legs and two antennæ, keeping up this performance...
as long as there is left a leg, and apparently to the very last, never realizing "what is doing." But they are not without means of defence; those two little tubes at the end of the body are not for ornament nor for producing honey-dew for the ants, but for secreting at their tips a globule of waxy substance meant to smear the eyes of the attacking insect. I once saw an aphid perform this act, when confronted by a baby spider; a drop of yellow liquid oozed out of one tube, and the aphid almost stood on its head in order to thrust this offensive globule directly into the face of the spider—the whole performance reminding me of a boy who shakes his clenched fist in his opponent's face and says, "Smell of that!" The spider beat a hasty retreat.

A German scientist, Mr. Busgen, discovered that a plant-louse smeared the eyes and jaws of its enemy, the aphis-lion, with this wax which dried as soon as applied. In action it was something like throwing a basin of paste at the head of the attacking party; the aphis-lion thus treated, was obliged to stop and clean itself before it could go on with its hunt, and the aphid walked off in safety. The aphids surely need this protection because they have two fierce enemies, the larvæ of the aphis-lions and of the ladybirds. They are also the victims of parasitic insects; a tiny four-winged "fly" lays an egg within an aphid; the larva hatching from it feeds upon the inner portions of the aphid, causing it to swell as if afflicted with dropsy. Later the aphid dies, and the interloper with malicious impertinence cuts a neat circular door in the poor aphid's skeleton skin and issues from it a full fledged insect.

The aphids are not without their resources to meet the exigencies of their lives in colonies. There are several distinct forms in each species, and they seem to be needed for the general good. During the summer, we find most of the aphids on plants are without wings; these are females which give birth to living young and do not lay eggs. They do this until the plant is overstocked and the food supply seems to be giving out, then another form is produced which has four wings. These fly away to some other plant and start a colony there; but at the approach of cold weather, or if the food plants give out, there are male and female individuals developed, the females being always wingless, and it is their office to lay the eggs which shall last during the long winter months, when the living aphids must die for lack of food plants. The next spring each winter-egg hatches into a female which we call the "stem mother" since she with her descendants will populate the entire plant.

Plant-lice vary in their habits. Some live in the ground on the roots of plants and are very destructive; but the greater number of species live on the foliage of plants and are very fond of the young, tender leaves and thus do great damage. Some aphids have their bodies covered with white powder or with tiny fringes, which give them the appearance of being covered with cotton.
The aphids injuring our flowers and plants may be killed by spraying them with soapsuds made in the proportion of one-quarter pound of ivory soap to one gallon of water. The spraying must be done very thoroughly so as to reach all the aphids hidden on the stems and beneath the leaves. It should be repeated every three days until the aphids are destroyed.

LESSON LXXXVII

THE APHIDS, OR PLANT-LICE

Leading thought—Aphids have the mouth in the form of a sucking tube which is thrust into the stems and leaves of plants; through it the plant juices are drawn for nourishment. Aphids are the source of honey-dew of which ants are fond.

Method—Bring into the schoolroom a plant infested with aphids, place the stem in water and let the pupils examine the insects through the lens.

Observations—1. How are the aphids settled on the leaf? Are their heads in the same direction? What are they doing?

2. Touch one and make it move along. What does it do in order to leave its place? What does it do with its sucking tube as it walks off? On what part of the plant was it feeding? Why does not Paris green when applied to the leaves of plants kill aphids?

3. Describe an aphid, including its eyes, antennæ, legs and tubes upon the back. Does its color protect it from observation?

4. Can you see cast skins of aphids on the plant? Why does an aphid have to shed its skin?

5. Are all the aphids on a plant wingless? When a plant becomes dry are there, after several days, more winged aphids? Why do the aphids need wings?

6. Do you know what honey-dew is? Have you ever seen it upon the leaf? How is honey-dew made by the aphids? Does it come from the tubes on their back? What insects feed upon this honey-dew?

7. What enemies have the aphids?

8. What damage do aphids do to plants? How can you clean plants of plant-lice?

I saw it (an ant), at first, pass, without stopping, some aphids which it did not however disturb. It shortly after stationed itself near one of the smallest, and appeared to caress it, by touching the extremity of its body, alternately with its antennæ, with an extremely rapid movement. I saw, with much surprise, the fluid proceed from the body of the aphid, and the ant take it in its mouth. Its antennæ were afterwards directed to a much larger aphid than the first, which, on being caressed after the same manner, discharged the nourishing fluid in greater quantity, which the ant immediately swallowed: it then passed to a third which it caressed, like the preceding, by giving it several gentle blows, with the antennæ, on the posterior extremity of the body; and the liquid was ejected at the same moment, and the ant lapped it up.

Pierre Huber, 1810.
THE ANT-LION

Teacher's Story

A CHILD is thrilled with fairy stories of ogres in their dens, with the bones of their victims strewn around. The ants have real ogres, but luckily, they do not know about it and so cannot suffer from agonizing fears. The ant ogres seem to have depended upon the fact that the ant is so absorbed in her work that she carries her booty up hill and down dale with small regard for the topography of the country. Thus they build their pits, with instinctive faith that they will some day be entered by these creatures, obsessed by industry and careless of what lies in the path. The pits vary with the size of the ogre at the bottom; there are as many sized pits as are beds in the story of Golden Locks and the bears; often the pits are not more than an inch across, or even less, while others are two inches in diameter. They are always made in sandy or crumbly soil and in a place protected from wind and rain; they vary in depth in proportion to their width, for the slope is always as steep as the soil will stand without slipping.

All that can be seen of the ogre at the bottom, is a pair of long, curved jaws, looking innocent enough at the very center of the pit. If we dig the creature out, we find it a comical looking insect. It is humpbacked, with a big, spindle-shaped abdomen; from its great awkward body projects a flat, sneaking looking head, armed in front with the sickle jaws which are spiny and bristly near the base, and smooth, sharp and curved at the tip. The strange thing about these jaws is that they lead directly to the throat, since the ant-lion has no mouth. Each jaw is made up of two pieces which are grooved where they join and thus form a tube with a hole in the tip through which the industrious blood of the ants can be sucked; not only do the sharp sickle points hold the victim, but there are three teeth along the side of each jaw to help with this. The two front pairs of legs are small and spiny; the hind legs are strong and peculiarly twisted, and have a sharp spikelike claw at the end, which is so arranged as to push the insect backward vigorously if occasion requires; in fact, the ant-lion in walking about, moves more naturally backward than forward because of the peculiar structure of his legs.

Having studied the ogre, we can see better how he manages to trap his victim. As the ant goes scurrying along, she rushes over the edge of the pit and at once begins to slide downward; she is frightened and struggles to get back; just then a jet of sand, aimed well from the bottom of the pit, hits her and knocks her back. She still struggles,
and there follows a fusillade of sand jets, each hitting her from above and
knocking her down to the fatal center where the sickle jaws await her
and are promptly thrust into her; if she is large and still struggles, the
big, unwieldy body of the ogre, buried in the sand, anchors him fast
and his peculiar, crooked hind legs push his body backward in this
strange tug of war; thus, the ant-ogre is not dragged out of his den
by the struggles of the ant, and soon the loss of blood weakens her and
she shrivels up.

The secret of the jets of sand, lies in the flat head of the ogre; if
we look at it regarding it as a shovel, we can see that it is well fitted
for its purpose; for it is a shovel with a strong mechanism working it.
In fact, the whole pit is dug with this shovel head. Wonderful stories
are told about the way that ant-lions dig their pits, marking out the outer
mana gin in a circle, and working inward. However, our common ant-lion
of the East simply digs down into the sand and flips the sand out until it
makes a pit. If an ant-lion can be caught and put in a jar of sand it
will soon make its pit, and the process may be noted carefully.

There is one quality in the ogre which merits praise, and that is his
patience. There lies in his hole for days or perhaps weeks, with noth-
ing to eat and no ant coming that way; so when we see an absent-minded
ant scrambling over into the pit, let us think of the empty stomach of this
patient litt’le engineer which has constructed his pit with such accuracy
and so much labor. So precarious is the living picked up by the ant-lions,
that it may require one, two or three years to bring one to maturity.
At that time it makes a perfectly globular cocoon of silk and sand, the
size of a large pea, and within it, changes to a pupa; and when finally
ready to emerge, the pupa pushes itself part way out of the cocoon and the
skin is shed and left at the cocoon door. The adult resembles a small
dragon-fly; it has large net-veined wings and is a most graceful insect, as
different as can be from the humpbacked ogre which it once was—a
transformation quite as marvelous as that which occurred in Beauty and
the Beast. Throughout the Middle West, the ant-lion in its pit is called
the "doodle-bug."

LESSON LXXXVIII

THE ANT-LION

Leading thought—The ant-lion, or "doodle-bug" makes a little pit in
the sand with very steep sides, and hidden at the bottom of it, waits for
ants to tumble in to be seized by its waiting jaws. Later the ant-lion
changes to a beautiful insect with gauzy wings, resembling a small dragon-
fly.

Method—The pupils should see the ant-lion pits in their natural situa-
tions, but the insects may be studied in the schoolroom. Some of the
ant-lions may be dug out of their pits and placed in a dish of sand. They
will soon make their pits, and may be watched during this interesting
process. It is hardly advisable to try to rear these insects, as they may
require two or three years for development.

Observations—1. Where were the ant-lion pits out of doors? Were
they in a windy place? Were they in a place protected from storms?
In what kind of soil were they made?
2. Measure one of the pits. How broad across, and how deep? Are all the pits of the same size? Why?

3. What can you see as you look down into the ant-lion's pit? Roll a tiny pebble in and see what happens? Watch until an ant comes hurrying along and slips into the pit. What happens then? As she struggles to get out how is she knocked back in? What happens to her if she falls to the bottom?

4. Take a trowel and dig out the doodle-bug. What is the shape of its body? What part of the insect did you see at the bottom of the pit? Do you know that these great sickle-shaped jaws are hollow tubes for sucking blood? Does the ant-lion eat anything except the blood of its victim?

5. Can you see that the ant-lion moves backward more easily than forward? How are its hind legs formed to help push it backward? How does this help the ant-lion in holding its prey? How does the big awkward body of the ant-lion help to hold it in place at the bottom of the pit when it seizes an ant in its jaws?

6. What shape is the ant-lion's head? How does it use this head in taking its prey? In digging its pit?

7. Take a doodle-bug to the schoolroom, place it in a dish of sand, covered with glass, and watch it build its pit.

8. Read in the entomological books about the cocoon of the ant-lion and what the adult looks like, and then write an ant-lion autobiography.

_Supplementary reading—Insect Stories, Kellogg, "The True Story of Morrowbie Jukes."

THE MOTHER LACE-WING AND THE APHIS-LION

Teacher's Story

FLITTING leisurely through the air on her green gauze wings, the lace-wing seems like a filmy leaf, broken loose and drifting on the breeze. But there is purpose in her flight, and through some instinct she is enabled to seek out an aphis-ridden plant or tree, to which she comes as a friend in need. As she alights upon a leaf, she is scarcely discernible because of the pale green of her delicate body and wings; however, her great globular eyes that shine like gold attract the attention of the careful observer. But though she is so fairy-like in appearance, if you pick her up, you will be sorry if your sense of smell is keen, for she exhales a most disagreeable odor when disturbed—a habit which probably protects her from birds or other creatures which might otherwise eat her.

However, if we watch her we shall see that she is a canny creature despite her frivolous appearance; her actions are surely peculiar. A drop of sticky fluid issues from the tip of her body, and she presses it down on the surface of the leaf; then lifting up her slender abdomen like a distaff, she spins the drop into a thread a half inch long or more, which the air soon dries; and this silken thread is stiff enough to sustain an oblong egg, as large as the point of a pin, which she lays at the very tip of it. This done she lays another egg in a like manner, and when she is through, the
leaf looks as if it were covered with spore cases of a glittering white mold. This done she flies off and disports herself in the sunshine, care free, knowing that she has done all she can for her family.

After a few days the eggs begin to look dark, and then if we examine them with a lens, we may detect that they contain little doubled-up creatures. The first we see of the egg inmate as it hatches, is a pair of jaws thrust through the shell, opening it for a peep-hole; a little later the owner of the jaws, after resting a while with an eye on the world which he is so soon to enter, pushes out his head and legs and drags out a tiny, long body, very callow-looking and clothed in long, soft hairs. At first the little creature crawls about his egg-shell, clinging tightly with all his six claws, as if fearful of such a dizzy height above his green floor; then he squirms around a little and thrusts out a head inquiringly while still hanging on "for dear life." Finally he gains courage and prospects around until he discovers his egg stalk, and then begins a rope climbing performance, rather difficult for a little chap not more than ten minutes old. He takes a careful hold with his front claws, the two other pairs of legs carefully balancing for a second, and then desperately seizing the stalk with all his clasping claws, and with many new grips and panics, he finally achieves the bottom in safety. As if dazed by his good luck, he stands still for a time, trying to make up his mind what has happened and what to do next; he settles the matter by trotting off to make his first breakfast of aphids; and now we can see that it is a lucky thing for his brothers and sisters, still unhatched, that they are high above his head and out of reach, for he might not be discriminating in the matter of his breakfast food, never having met any of his family before. He is a queer looking little insect, spindle-shaped and with peculiarly long, sickle-shaped jaws projecting from his head. Each of these jaws is made up of two pieces joined lengthwise so as to make a hollow tube, which has an opening at the tip of the jaw, and another one at the base which leads directly to the little lion's throat. Watch him as he catches an aphid; seizing the stupid little bag of sap in his great pincers, he lifts it high in the air, as if drinking a bumper, and sucks its green blood until it shrivels up, kicking a remonstrating leg to the last. It is my conviction that aphids never realize when they are being eaten; they simply dimly wonder what is happening.

It takes a great many aphids to keep an aphis-lion nourished until he gets his growth; he grows like any other insect by shedding his skeleton skin when it becomes too tight. Finally he doubles up and spins around himself a cocoon of glistening white silk, leaving it fastened to the leaf;
when it is finished, it looks like a seed pearl, round and polished. I wish some child would watch an aphis-lion weave its cocoon and tell us how it is done! After a time, a week or two perhaps, a round little hole is cut in the cocoon, and there issues from it a lively little green pupa, with wing pads on its back; but he very soon sheds his pupa skin and issues as a beautiful lace-wing fly with golden eyes and large, filmy, iridescent, pale green wings.

LESSON LXXXIX

The Mother Lace-wing and the Aphis-lion

Leading thought—The lace-wing fly or golden-eyes, as she is called, is the mother of the aphis-lion. She lays her eggs on the top of stiff, silken stalks. The young aphis-lions when hatched, clamber down upon the leaf and feed upon plant-lice, sucking their blood through their tubular jaws.

Method—Through July and until frost, the aphis-lions may be found on almost any plant infested with plant-lice; and the lace-wing’s eggs or egg-shells on the long stalks are also readily found. All these may be brought to the schoolroom. Place the stem of a plant infested with aphids in a jar of water, and the acts of the aphis-lions as well as the habits of the aphids may be observed during recess or at other convenient times, by all the pupils.

Observations—1. When you see a leaf with some white mold upon it, examine it with a lens; the mold is likely to be the eggs of the lace-wing. Is the egg as large as a pin head? What is its shape? What is its color? How long is the stalk on which it is placed? Of what material do you think the stalk is made? Why do you suppose the lace-wing mother lays her eggs on the tips of stalks? Are there any of these eggs near each other on the leaf?

2. If the egg is not empty, observe through a lens how the young aphis-lion breaks its egg-shell and climbs down.

4. What is the general shape of the aphis-lion? Describe the jaws. Do you think these jaws are used for chewing, or merely as tubes through which the green blood of the aphids is sucked? Do the aphis-lions ever attack each other or other insects? How does the aphis-lion differ in appearance from the ladybird larva?

5. What happens to the aphis-lion after it gets its growth? Describe its cocoon if you can find one.

6. Describe the little lace-wing fly that comes from the cocoon. Why is she called, golden-eyes? Why lace-wing? Does she fly rapidly? Do you suppose that if she should lay her eggs flat on a leaf, that the first aphis-lion that hatched would run about and eat all its little brothers and sisters which were still in their egg-shells? How do the aphis-lions benefit our rose bushes and other cultivated plants?

Supplementary Reading—“A Tactful Mother” in Ways of the Six-Footed.
THE MOSQUITO

Teacher's Story

In defiance of the adage, the mother of our most common mosquitoes does not hesitate to put her eggs all in one basket, but perhaps she knows it is about the safest little basket for eggs in this world of uncertainties. If it were possible to begin this lesson with the little boat-shaped egg baskets, I should advise it. They may be found in almost any rain barrel, and the eggs look like a lot of tiny cartridges set side by side, points up, and lashed or glued together, so there shall be no spilling. Like a certain famous soap, they "float," coming up as dry as varnished corks when water is poured upon them.

The young mosquito, or wriggler, breaks through the shell of the lower end of the egg and passes down into the water, and from the first, it is a most interesting creature to view through a hand lens. The head and the thorax are rather large while the body is tapering and armed with bunches of hairs. At the rear of the body are two tubes very different in shape; one is long, straight and unadorned; this is the breathing tube through which air passes to the tracheæ of the body. This tube has a star-shaped valve at the tip, which can be opened and shut; when it is opened at the surface of the water, it keeps the little creature afloat and meanwhile allows air to pass into the body. When the wriggler is thus hanging at an angle of 45 degrees to the surface of the water, it feeds upon small particles of decaying vegetation; it has a remarkable pair of jaws which are armed with brushes, which in our common species, by moving rapidly, set up currents and bring the food to the mouth. This process can be seen plainly with a lens. When disturbed, the wriggler shuts the valve to its breathing tube, and sinks. However, it is not much heavier than the water; I have often seen one rise for some distance without apparent effort. The other tube at the end of the body supports the swimming organs, which consist of four finger-like processes and various bunches of hairs. When swimming, the wriggler goes tail first, the swimming organs seeming to take hold of the water and to pull the creature backward, in a series of spasmodic jerks; in fact, the insect seems simply to "throw somersaults," like an acrobat. I have often observed wrigglers standing on their heads in the bottom of the aquarium, with their jaws bent
under, revolving their brushes briskly; but they never remain very long below the surface, as it is necessary for them to take in fresh air often.

The pupa has the head and thoracic segments much enlarged, making it all "head and shoulders" with a quite insignificant body attached. Upon the thorax are two breathing tubes, which look like two ears, and therefore when the pupa rests at the surface of the water, it remains head up so that these tubes may take in the air; at the end of the body are two swimming organs which are little, leaf-like projections. At this stage the insect is getting ready to live its life in the air, and for this reason probably, the pupa rests for long periods at the surface of the water and does not swim about much, unless disturbed. However, it is a very strange habit for a pupa to move about at all. In the case of other flies, butterflies, and moths, the pupa stage is quiet.

When fully mature, the pupa rises to the surface of the water, the skeleton skin breaks open down its back and the mosquito carefully works itself out, until its wings are free and dry, meanwhile resting upon the floating pupa skin. This is indeed a frail bark, and if the slightest breeze ruffles the water, the insect is likely to drown before its wings are hard enough for flight.

The reason that kerosene oil, put upon the surface of the water where mosquitoes breed, kills the insects is because both the larvae and pupae of mosquitoes are obliged to rise to the surface, and push their breathing tubes through the surface film so that they will open to the air; a coating of oil on the water prevents this, and they are suffocated. Also when the mosquito emerges from the pupa skin, if it is even touched by the oil, it is unable to fly and soon dies.
The male mosquitoes have bushy, or feathery, antennæ. These antennæ are hearing organs of very remarkable construction; (see Ways of the Six-Footed, p. 8.) The Anopheles may be distinguished from the Culex by the following characteristics: Its wings are spotted instead of plain. When at rest it is perfectly straight, and is likely to have the hind legs in the air. It may also rest at an angle to the surface to which it clings. The Culex is not spotted on the wings and is likely to be humped up when at rest. In our climate the Anopheles is more dangerous than the Culex because it carries the germs of malaria. A mosquito’s wing under a microscope is a most beautiful object, as it is “trimmed” with ornamental scales about the edges and along the veins. The male mosquitoes neither sing nor bite; the song of the female mosquito is supposed to be made by the rapid vibration of the wings, and her musical performances are for the purpose of attracting her mate, as it has been shown that he can hear through his antennæ a range of notes covering the middle and next higher octaves of the piano.

Of late we are learning that the mosquitoes are in a very strange way a menace to health. Through a heroism, as great as ever shown on field of battle, men have imperiled their lives to prove that the germs of the terrible yellow fever were transmitted by the biting mosquito, and with almost equal bravery other men have demonstrated that the germs of malaria are also thus carried.

In the North, our greatest danger is from the mosquitoes which carry the malarial germs, and these are the mosquitoes with spotted wings and belong to the genus Anopheles. This mosquito, in order to be of danger to us must first feed upon the blood of some person suffering from malaria (ague) and thus take the germ of the disease into its stomach. Here the germ develops and multiplies into many minute germs, which pass through another stage and finally get into the blood of the mosquito and accumulate in the salivary glands. The reason any mosquito bite or insect bite swells and itches is because, as the insect’s beak is inserted into the flesh, it carries with it some of the saliva from the insect’s mouth. In the case of Anopheles these malarial germs are carried with the saliva into the blood of the victim. It has been proven that in the most

The pupa of a mosquito, greatly magnified. Note b the breathing tubes near the head.

Drawn by Evelyn Mitchell.
malarial countries, like Italy and India, people are entirely free from malaria if they are not bitten by mosquitoes.

After this explanation has been made, it would be well for the teacher to take the pupils on a tour of inspection through the neighborhood to see if there are any mosquito larvae in rain barrels, ponds or pools of stagnant water. If such places are found, let the pupils themselves apply the following remedies:

1. Rain barrels should be securely covered.
2. All stagnant pools should be drained and filled up if possible.
3. Wherever there are ponds or pools where mosquitoes breed that cannot be filled or drained, the surface of the water should be covered with a spray of kerosene oil. This may be applied with a spray pump or from a watering can.
4. If it is impracticable to cover such places with oil, introduce into such pools the following fish: Minnows, sticklebacks, sunfish and goldfish.

The effect of this lesson upon the children should be to impress them with the danger to life and health from mosquitoes and to implant in them a determination to rid the premises about their homes of these pests.

![Wing of mosquito enlarged.](Comstock's Manual)

LESSON XC

The Mosquito

Leading thought—The wrigglers, or wigglers, which we find in rainbarrels and stagnant water are the larvae of mosquitoes. We should study their life history carefully if we would know how to get rid of mosquitoes.

Method—There is no better way to interest the pupils in mosquitoes than to place in an aquarium jar in the schoolroom a family of wrigglers from some pond or rain barrel. For the pupils' personal observation, take some of the wrigglers from the aquarium with a pipette and place them in a homeopathic vial; fill the vial three-fourths full of water and cork it. Pass it around with a hand lens and give each pupil the opportunity to observe it for five or ten minutes. It would be well if this vial could be left on each desk for an hour or so during study periods, so that the
observations may be made casually and leisurely. While the pupils are studying the wrigglers, the following questions should be placed upon the blackboard, and each pupil should make notes which may finally be given at a lesson period. This is particularly available work for September.

In studying the adult mosquito, a lens or microscope is necessary. But it is of great importance that the pupils be taught to discriminate between the comparatively harmless species of Culex and the dangerous Anopheles and therefore they should be taught to be observant of the way mosquitoes rest upon the walls, and whether they have mottled or clear wings.

The Larva

Observations: 1. Note if all the wrigglers are of the same general shape, or if some of them have a very large head; these latter are the pupae and the former are the larvae. We will study the larvae first. Where do they rest when undisturbed? Do they rest head up or down? Is there any part of their body that comes to the surface of the water?

2. When disturbed what do they do? When they swim, do they go head or tail first? When they float do they go upward or downward?

3. Observe one resting at the top. At what angle does it hold itself to the surface of the water? Observe its head. Can you see the jaw brushes revolving rapidly? What is the purpose of this? Describe its eyes. Can you see its antennae?

4. Note the two peculiar tubes at the end of the body and see if you can make out their use.

5. Note especially the tube that is thrust up to the surface of the water when the creatures are resting. Can you see how the opening of this tube helps to keep the wriggler afloat? What do you think is the purpose of this tube? Why does it not become filled with water when the wriggler is swimming? Can you see the two air vessels, or trachea, extending from this tube along the back the whole length of the body?

6. Note the peculiarities of the other tube at the rear end of the body. Do you think the little finger-like projections are an aid in swimming? How many are there?

7. Can you see the long hairs along the side of the body?

8. Does the mosquito rest at the bottom of the bottle or aquarium?

The Pupa

9. What is the most noticeable difference in appearance between the larva and pupa?

10. When the pupa rests at the surface of the water, is it the same end up as the wriggler?

11. Note on the “head” of the pupa two little tubes extending up like ears. These are the breathing tubes. Note if these open to the air when the pupa rests at the surface of the water.

12. Can you see the swimming organs at the rear of the body of the pupa? Does the pupa spend a longer time resting at the surface than the larva. How does it act differently from the pupae of other flies and moths and butterflies?

13. How does the mosquito emerge from the pupa skin? Why does kerosene oil poured on the surface of the water kill mosquitoes?
The Adult Mosquito

1. Has the mosquito feathery antennæ extending out in front? If so, what kind of mosquitoes are such?
2. Do the mosquitoes with bushy antennæ bite? Do they sing?
3. Are the wings of the mosquito spotted or plain? How many has it?
4. When at rest, is it shortened and humpbacked or does it stand straight out with perhaps its hind legs in the air?
5. What are the characteristics by which you can tell the dangerous Anopheles?
6. Why is the Anopheles more dangerous than the Culex?
7. Examine a mosquito’s wing under a microscope and describe it.
8. Examine the antennæ of a male and a female mosquito under a microscope, and describe the difference.
9. Which sex of the mosquito does the biting and the singing?
10. How is the singing done?

THE HOUSE-FLY

Teacher’s Story

The house-fly is surely an up-to-date member of that select class which evolutionists call the “fit.” It flourishes in every land, plumping itself down in front of us at table, whether we be eating rice in Hong Kong, dhura in Egypt, macaroni in Italy, pie in America, or tamales in Mexico. There it sits, impertinent and imperturbable, taking its toll, letting down its long elephant-trunk tongue, rasping and sucking up such of our meal as fits its needs. As long as we simply knew it as a thief we, during untold ages, merely slapped it and shooed it, which effort on our part apparently gave it exhilarating exercise. But during recent years we have begun trapping and poisoning, trying to match our brains against its agility; although we slay it by thousands, we seem only to make more room for its well-fed progeny of the future, and in the end we seem to have gained nothing. But the most recent discoveries of science have revealed to us, that what the house-fly takes of our food, is of little consequence to what it leaves behind. Because of this, we have girded up our loins and gone into battle in earnest.

I have always held that nature-study should follow its own peaceful path and not be the slave of economic science. But occasionally it seems necessary, when it is a question of creating public sentiment, and of cultivating public intelligence in combating a great peril, to make nature-study a handmaiden, if not a slave, in this work. If our woods were filled with wolves and bears, as they were in the days of my grandfather, I should give nature-study lessons on these animals, which would lead to their subjugation. Bears and wolves trouble us no more; but now we have enemies far more subtle, in the ever-present microbes, which we may never hope to conquer but which, with proper precautions, we may render comparatively harmless. Thus, our nature-study with insects which
carry disease, like the mosquitoes, flies and fleas, must be a reconnaissance for a war of extermination; the fighting tactics may be given in lessons on health and hygiene.

Perhaps if a fly were less wonderfully made, it would be a less convenient vehicle for microbes. Its eyes are two great, brown spheres on either side of the head, and are composed of thousands of tiny six-sided eyes that give information of what is coming in any direction; in addition, it has on top of the head, looking straight up, three tiny, shining, simple eyes, which cannot be seen without a lens. Its antennæ are peculiar in shape, but are evidently sense organs; it is attracted from afar by certain odors, and so far as we can discover, its antennæ are all the nose it has. Its mouth-parts are all combined to make a most amazing and efficient organ for getting food; at the tip are two flaps, which can rasp a substance so as to set free the juices, and above this is a tube, through which the juices may be drawn to the stomach. This tube is extensible, being conveniently jointed so that it can be folded under the "chin" when not in use. This is usually called the fly's tongue, but it is really all the mouth parts combined, as if a boy had his lips, teeth and tongue, standing out from his face, at the end of a tube a foot long.

The thorax can be easily studied; it is striped black and white above and bears the two wings, and the two little flaps that are called balancers and which are probably remnants of hind wings which the remote ancestors of flies flew with. The fly's wing is a transparent but strong membrane strengthened by veins, and is prettily iridescent. The thorax bears on its lower side the six pairs of legs. The abdomen consists of five segments and is covered with stiff hairs. The parts of the leg, seen when the fly is walking, consists of three segments, the last segment or tarsus being more slender, and if looked at with a lens, is seen to be composed of five segments, the last of which bears the claws; it is with these claws that the fly walks, although all of the five segments really form the foot; in other words, it walks on its tip-toes. But it clings to ceilings by means of the two little pads below the claws, which are covered with hairs that excrete at the tips, a sticky fluid. Because of the hairs on its feet, the fly becomes a carrier of microbes and a menace to health.

The greatest grudge I have against this little, persistent companion of our household is the way it has misled us by appearing to be so fastidious in its personal habits. We have all of us seen, with curiosity and admiration, its complex ablutions and brushings. It usually begins, logically, with its front feet, the hands; these it cleans by rubbing them against each other lengthwise. The hairs and spines on one leg act as a brush for the other, and then lest they be not clean, it nibbles them with its rasping disc, which is all the teeth it has. It then cleans its head with these clean hands, rubbing them over its big eyes with a vigor that makes us wink simply to contemplate; then bobbing its head down so as to reach what is literally its back hair, it brushes valiantly. After this is done, it reaches forward first one and then the other foot of the middle pair of legs, and taking each in turn between the front feet, brushes it vigorously, and maybe
nibbles it. But as a pair of military brushes, its hind feet are conspicuously efficient; they clean each other by being rubbed together and then they work simultaneously on each side in cleaning the wings, first the under side and then the upper side. Then over they come and comb the top of the thorax; then they brush the sides, top and under sides of the abdomen, cleaning each other between the acts. Who, after witnessing all this, could believe that the fly could leave any tracks on our food, which would lead to our undoing! But the house-fly, like many housekeepers with the best intentions in the matter of keeping clean, has not mastered the art of getting rid of the microbes. Although it has so many little eyes, none of them can magnify a germ so as to make it visible; and thus it is that, when feeding around where there have been cases of typhoid and other enteric diseases, the house-fly's little claws become infested with disease germs; and when it stops some day to clean up on our table, it leaves the germs with us. Thus our only safety lies in the final extermination of this little nuisance.

It is astonishing how few people know about the growth of flies. People of the highest intelligence in other matters, think that a small fly can grow into a large one. A fly, when it comes from the pupa stage, is as large as it will ever be, the young stages of flies being maggots. The house-fly's eggs are little, white, elongated bodies about as large as the point of a pin. These are laid preferably in horse manure. After a few hours, they hatch into slender, pointed, white maggots which feed upon the excrement. After five or six days, the larval skin thickens, turns brown, making the insect look like a small grain of wheat. This is the pupal stage, which lasts about five days, and then the skin bursts open and the full-grown fly appears. Of course, not all the flies multiply according to the example given to the children. The house-fly has many enemies and, therefore, probably no one hibernating mother fly is the ancestress of billions by September; however, despite enemies, flies multiply with great rapidity.

I know of no more convincing experiment as an example of the dangerous trail of the fly, than that of letting a house-fly walk over a saucer of nutrient gelatin. After three or four days, each track is plainly visible as a little white growth of bacteria.

Much is being done now to eradicate the house-fly, and undoubtedly there will be new methods of fighting it devised every year. The teacher should keep in touch with the bulletins on this subject published by the United States Department of Agriculture, and should give the pupils instructions according to the latest ideas. At present the following are the methods of fighting this pest: Keep the stable clean and place the manure under cover. All of the windows of the house should be well screened. All the flies which get into the house should be killed by using the commercial fly papers.
LESSON XCI

THE HOUSE-FLY

Leading thought—The house-fly has conquered the world and is found everywhere. It breeds in filth and especially in horse manure. It is very prolific; the few flies that manage to pass the winter in this northern climate, are ancestors of the millions which attack us and our food later in the season. These are a menace to health because they carry germs of disease from sputa and excrementitious matter to our tables, leaving them upon our food.

Method—Give out the questions for observation and let the pupils answer them either orally or in their note-books. If possible, every pupil should look at a house-fly through a three-quarters objective. If this is not possible, pictures should be shown to demonstrate its appearance.

Observations—
1. Look at a fly, using a lens if you have one. Describe its eyes. Do you see that they have a honeycomb arrangement of little eyes? Can you see, on top of the head between the big eyes, a dot? A microscope reveals this dot to be made of three tiny eyes, huddled together. After seeing a fly’s eyes, do you wonder that you have so much difficulty in hitting it or catching it?

2. Can you see the fly’s antennae? Do you think that it has a keen sense of smell? Why?

3. How many wings has the fly? How does it differ from the bee in this respect? Can you see two little white objects, one just behind the base of each wing? These are called poisers, or balancers, and all flies have them in some form. What is the color of the wings? Are they transparent? Can you see the veins in them? On what part of the body do the wings grow?

4. Look at the fly from below. How many legs has it? From what part of the body do the legs come? What is that part of the insect’s body called, to which the legs and wings are attached?

5. How does the fly’s abdomen look? What is its color and its covering?

6. Look at the fly’s legs. How many segments can you see in a leg? Can you see that the segment on which the fly walks has several joints? Does it walk on all of these segments or on the one at the tip?

7. When the fly eats, can you see its tongue? Can you feel its tongue when it rasps your hand? Where does it keep its tongue usually?

9. Do you know how flies carry disease? Did you ever see them making their toilet on your food at the table? Do you know what diseases are carried by flies? What must you do to prevent flies from bringing disease to your family?

10. Do you think that a small fly ever grows to be a large fly? How do the young of all kinds of flies look? Do you know where the house-fly lays its eggs? On what do the maggots feed? How long before they change to pupae? How long does it take them to grow from eggs to flies? How do the house-flies in our northern climate pass the winter?

11. Lesson in Arithmetic—It requires perhaps twenty days to span the time from the eggs of one generation of the house-fly to the eggs of the next, and thus there might easily be five generations in one summer.
Supposing the fly which wintered behind the window curtain in your home last winter, flew out to the stables about May 1st and laid 120 eggs in the sweepings from the horse stable, all of which hatched and matured. Supposing one-half of these were mother flies and each of them, in turn, laid 120 eggs, and so on for five generations, all eggs laid developing into flies, and one-half of the flies of each generation being mother flies. How many flies would the fly that wintered behind your curtain have produced by September?

12. Pour some gelatin unsweetened, on a clean plate. Let a house-fly walk around on the gelatin as soon as it is cool; cover the plate to keep out the dust and leave it for two or three days. Examine it then and see if you can tell where the fly walked. What did it leave in its tracks?

13. Write an essay on the house-fly, its dangers and how to combat it, basing the essay on Bulletins of the U. S. Department of Agriculture.

THE COLORADO POTATO-BEETLE

Teacher's Story

The potato-beetle is not a very attractive insect, but it has many interesting peculiarities. No other common insect so clearly illustrates the advantage of warning colors. If we take a beetle in the hand, it at first promptly falls upon its back, folds its legs and antennae down close to its body, and "plays possum" in a very canny manner. But if we squeeze it a little, immediately an orange-red liquid is ejected on the hand, and a very ill-smelling liquid it is. If we press lightly, only a little of the secretion is thrown off; but if we squeeze harder, it flows copiously. Thus a bird trying to swallow one of these beetles, would surely get a large dose. The liquid is very distasteful to birds, and it is indeed a stupid bird that does not soon learn to let severely alone orange and yellow beetles, stipped with black. The source of this offensive and defensive juice is at first a my tery, but if we observe closely we can see it issuing along the hind edge of the thorax and the front portion of the wing-covers; the glands in these situations secrete the protective juice as it is needed. The larvae are also equipped with similar glands and, therefore, have the brazen habit of eating the leaves of our precious potatoes without attempting to hide. They seem to know that they are far safer when seen by birds than when concealed from them.

The life history of the potato-beetle is briefly as follows: Some of the adult beetles or pupae winter beneath the surface of the soil, burrowing down a foot or more to escape freezing. As soon as the potato plants appear above ground the mother beetle comes out and lays her eggs upon the under sides of the leaves. These orange-yellow eggs are usually laid in clusters. In about a week there hatches from the eggs little yellow or orange humpbacked larvae, which begin at once to feed upon the leaves. These larvae grow as do other insects, by shedding
their skins. They do this four times, and during the last stages, are very conspicuous insects on the green leaves; they are orange or yellow with black dots along the sides, and so humpbacked are they that they seem to be "gathered with a puckering string" along the lower side. It requires from sixteen days to three weeks for a larva to complete its growth. It then descends into the earth and forms a little cell in which it changes to a pupa. It remains in this condition for one or two weeks, according to the temperature, and then the full-fledged beetle appears. The entire life cycle from egg to adult beetle may be passed in about a month, although if the weather is cold, this period will be longer. The beetles are very prolific, a mother beetle having been known to produce five hundred eggs, and there are two generations each year. These beetles not only damage the potato crop by stopping the growth through destroying the leaves, but they also cause the potatoes to be of inferior quality.

The adult beetle is an excellent object lesson in the study of beetle form. Attention should be called to the three regions of the body: A head which is bright orange; the compound eyes, which are black; and three simple eyes on the top of the head, which are difficult to see without a lens. The antennæ are short, their joints easily noted, and special attention should be paid to their use, for they are constantly moving to feel approaching objects. The two pairs of mouth palpi may be seen, and the beetle will eagerly eat raw potatoes, so that the pupils may see that it has biting mouth-parts. The thoracic shield is orange, ornamented with black. The three pairs of legs are short, which is a proof that these beetles do not migrate on foot. The claws and the pads beneath can be seen with the naked eye. Each wing-cover bears five yellow stripes, also five black ones, although the outside black stripe is rather narrow. These beetles are very successful flyers. During flight, the wing-covers are raised and held motionless while the gauzy wings beneath are unfolded and do the work. Children are always interested in seeing the way the beetles fold their wings beneath the wing-covers.
One of the most remarkable things about the Colorado potato-beetle is its history. It is one of the few insect pests which is native to America. It formerly fed upon sandbur, a wild plant allied to the potato, which grows in the region of Colorado, Arizona and Mexico, and was a well behaved, harmless insect. With the advance of civilization westward, the potato came also, and proved to be an acceptable plant to this insect; and here we have an example of what an unlimited food supply will do for an insect species. The beetles multiplied so much faster than their parasites, that it seemed at one time as if they would conquer the earth by moving on from potato field to potato field. They started on their march to the Atlantic seaboard in 1859; in 1874, they reached the coast and judging by the numbers washed ashore, they sought to fly or swim across the Atlantic. By 1879, they had spread over an area consisting of more than one-third of the United States.

LESSON XCII

The Colorado Potato-beetle

*Leading thought—The Colorado potato-beetle is a very important insect, since it affects the price of potatoes each year. It is disagreeable as a food for birds, because of an acrid juice which it secretes. We should learn its life-history and thus be able to deal with it intelligently in preventing its ravages.***

*Method—The study of the potato-beetle naturally follows and belongs to gardening. The larvæ should be brought into the schoolroom and placed in a breeding cage on leaves of the potato vine. Other plants may be put into the cage to prove that these insects will only eat the potato. The children should observe how the larvæ eat and how many leaves a full grown larva will destroy in a day. Earth should be put in the bottom of the breeding cage so that the children may see the larvæ descend and burrow into it. The adult beetles should be studied carefully, and especially, the children should see the excretion of the acrid juice.***

*Observations—1. At what time do you see the potato-beetles? Why are they more numerous in the fall than in the spring? Where do those which we find in the spring come from? What will they do if they are allowed to live?***

*2. What is the shape of the potato-beetle? Describe the markings on its head. What color are its eyes? Describe its antennæ. How are they constantly used? Can you see the palpi of the mouth? Give the beetle a bit of potato and note how it eats.***

3. What is the color of the shield of the thorax? Describe the legs. Do you think the beetle can run fast? Why not? How many segments has the foot? Describe the claws. Describe how it clings to the sides of a tumbler or bottle.
4. If the beetle cannot run rapidly, how does it travel? Describe the wing-covers. Why is this insect called the ten-lined potato beetle?

5. Describe the wings. How are they folded when at rest? How are the wing-covers carried when the beetle is flying?

6. Take a beetle in your hand. What does it do? Of what advantage is it to the insect to pretend that it is dead? If you squeeze the beetle what happens? How does the fluid which it ejects look and smell? Try and discover where this fluid comes from? Of what use is it to the beetle? Why will birds not eat the potato-beetle?

7. Where does the mother beetle lay her eggs? Are they laid singly or in clusters? What color are the eggs? How long after they are laid before they hatch?

8. Describe the young larva when it first hatches. What color is it at first? Does it change color later? Describe the colors and markings of a full grown larva.

9. How does this larva injure the potato vines? Does it remain in sight while it is feeding? Does it act as if it were afraid of birds? Why is it not eaten by birds?

10. Where does the larva go when it is full grown? How many times does it shed its skin during its growth? Does it make a little cell in the ground? How does the pupa look? Can you see in it the eyes, antennæ, legs and wings of the beetle?

11. Write an English theme giving the history of the Colorado potato-beetle, and the reasons for its migration from its native place.
THE LADYBIRD

Teacher's Story

Ladybird, Ladybird, fly away home!
Your house is on fire, your children are burning.

This incantation we, as children, repeated to this unhearing little beetle, probably because she is and ever has been, the incarnation of energetic indecision. She runs as fast as her short legs can carry her in one direction, as if her life depended on getting there, then she turns about and goes with quite as much vim in another direction. Thus, it is no wonder the children think that when she hears this news of her domestic disasters, she wheels about and starts for home; but she has not any home now nor did she ever have a home, and she does not carry even a trunk. Perhaps it would be truer to say that she has a home everywhere, whether she is cuddled under a leaf for a night's lodging or industriously climbing out on twigs, only to scramble back again, or perchance to take flight from their tips.

There are many species of ladybirds, but in general they all resemble a tiny pill cut in half, with legs attached to the flat side. Sometimes it may be a round and sometimes an oval pill, but it is always shining and the colors are always dull dark red, or yellow, or whitish, and black. Sometimes she is black with red or yellow spots, sometimes red or yellow with black spots and the spots are usually on either side of the thorax and one on each snug little wing-cover. But if we look at the ladybird carefully we can see the head and the short, clublike antennae. Behind the head is the thorax with its shield, broadening toward the rear, spotted and ornamented in various ways; the head and thorax together occupy scarcely a fourth of the length of the insect, and the remainder consists of the hemispherical body, encased with polished wing-covers. The little black legs, while quite efficient because they can be moved so rapidly, are not the ladybird's only means of locomotion; she is a good flier and has a long pair of dark wings which she folds crosswise under her wing-covers. It is comical to see her pull up her wings, as a lady tucks up a long petticoat; and sometimes ladybird is rather slovenly about it and runs around with the tips of her wings hanging out behind, quite untidily.

But any untidiness must be inadvertent, because the ladybird takes very good care of herself and spends much time in "washing up." She begins with her front legs, cleaning them with her mandibles, industriously nibbling off every grain of dust; she then cleans her middle and hind legs by rubbing the two on the same side, back and forth against each other, each acting as a whisk broom for the other; she cleans her wings by brushing them between the edges of the wing-cover above and the tarsus of her hind leg below.

The ladybird is a clever little creature, even if it does look like a pill, and if you disturb it, it will fold up its legs and drop as if dead, playing possum in a most deceptive manner. It will remain in this attitude of
rigid death for at least a minute or two and then will begin to claw the air with all its six legs in an effort to turn right side up.

From our standpoint the ladybird is of great value, for during the larval as well as adult stages, all species except one, feed upon those insects which we are glad to be rid of. They are especially fond of aphids and scale insects. One of the greatest achievements of economic entomology was the introduction on the Pacific Coast of the ladybird from Australia, called the Vedalia, which preys upon the cottony cushion scale insect, a species very dangerous to orange and lemon trees. Within a few years the introduced ladybirds had completely exterminated this pest.

The ladybird’s history is as follows: The mother beetle, in the spring, lays her eggs here and there on plants; as soon as the larva hatches, it starts out to hunt for aphids and other insects. It is safe to say that no ladybird would recognize her own children in time to save them, even if the house were burning, for they do not in the least resemble her; they are neither roly-poly nor shiny, but are long and segmented and velvety, with six queer, short legs that look and act as if they were whittled out of wood; they seem only efficient for clinging around a stem. The larvæ are usually black, spotted with orange or yellow; there are six warts on each segment, which make the creature’s back look quite rough. The absorbing business of the larva is to crawl around on plants and chew up the foolish aphids or the scale insects. I have seen one use its front foot to push an aphid, which it was eating, closer to its jaws; but when one green leg of its victim still clung to its head, it did not try to rub it off as its mother would have done, but twisted its head over this way and that, wiping off the fragment on a plant stem and then gobbling it up.

After the larva has shed its skeleton skin several times, and destroyed many times its own bulk of insects, it hunts for some quiet corner, hangs itself up by the tail and condenses itself into a sub-globular form; it sheds its spiny skin pushing it up around the point of attachment, and there lets it stay like the lion’s skin of Hercules. As a pupa, it is more nearly rectangular than round, and if we look closely, we can see the wing-cases, the spotted segments of the abdomen, and the eyes, all encased in the pupa skin; the latter bursts open after a few days and the shining, little half-globe emerges a full-grown ladybird, ready for hiding in some cozy spot to pass the winter, from which she will emerge in the spring, to stock our trees and vines, next year, with her busy little progeny.

References—American Insects, Kellogg; Manual for the Study of Insects, Comstock.

LESSON XCIII

THE LADYBIRD

Leading thought—The ladybird is a beetle. Its young are very different from the adult in appearance, and feed upon plant-lice.

Method—These little beetles are very common in autumn and may be brought to the schoolroom and passed around in vials for the children to observe. Their larvæ may be found on almost any plant infested with
plant-lice. Plant and all may be brought into the schoolroom and the actions of the larvae noted by the pupils during recess.

Observations—1. How large is the ladybird? What is its shape? Would two of them make a little globe if they were put flat sides together?

2. What colors do you find on your ladybird?

3. Do you see the ladybird’s head and antennae? What is the broad shield directly back of the head called? How is it marked, and with what colors? What color are the wing-covers? Are there any spots upon them? How many? Does the ladybird use its wing-covers when it flies? Describe her true wings. Does she fold them beneath the wing-covers?

4. Note the legs and feet. Are the legs long? Are they fitted for running? To which part of the body are they attached?

5. If you disturb the ladybird how does she “play possum?” Describe how she makes her toilet.

The larva—1. Describe the ladybird larva. Does it look like its mother? What is its form? Is it warty and velvety or shiny?

2. Describe its head and jaws as far as you can see. How does it act when eating? Can you see its little stiff legs? Is there a claw at the end of each?

3. Describe the actions of the ladybird larva in attacking and eating the plant-lice. Does it shed its skin as it grows?

4. Watch a larva until it changes to a pupa. How does the pupa look? Can you see the shed skin? Where is it? To what is the pupa attached? When the pupa skin breaks open what comes out of it?

5. Why is the ladybird of great use to us? Write an English theme upon the ladybird, called Vedalia, which saved the orange orchards of California.

1, Larva; 2, pupa and 3, adult of a species of ladybird, enlarged.

The small beetle represents actual size.
HE time of this sowing is during warm, damp nights in July and August, and even in September, although they are sown less lavishly then. How little most of us know of the harvest, although we see the sowing which begins in the early twilight against the background of tree shadows, and lasts until the cold atmosphere of the later night dampens the firefly ardor! There is a difference in species as to the height from the ground of their flight; some species hover next to the grass, others fly above our heads, but rarely as high as the tree tops in northern latitudes. Some species give a short flash that might be called a refulgent blinking; others give a longer flash so that we get an idea of the direction of their flight; and there is a common species in the Gulf States which gives such long flashes that they mark the night with gleaming curlicues.

It is likely to be an exciting chase, before we are able to capture a few of these insects for closer inspection; but when once captured, they do not-sulk but will keep on with their flashing and give us a most edifying display. The portion of the firefly which gives the light is in the abdomen, and it glows steadily like "phosphorescent wood"; then suddenly it gleams with a green light that is strong enough to reveal all its surroundings; and it is so evidently an act of will on the part of the beetle, that it is startling to members of our race, who cannot even blush or turn pale voluntarily. The fireflies may be truly said to be socially brilliant, for the flashing of their lights is for the attraction of their mates.

The fireflies are beetles, and there are many species which are luminous. A common one is here figured (Photinus pyralis). It is pale gray above and the head is completely hidden by the big shield of the thorax. The legs are short; thus this beetle trusts mostly to its wings as a means of locomotion. The antennæ are rather long and are kept in constant motion, evidently conveying intelligence of surroundings to the insect. Beneath the gray elytra, or wing-covers, is a pair of large, dark-veined membranous wings which are folded in a very neat manner crosswise and lengthwise, when not in use. When in use, the wing-covers are lifted stiffly and the flying is done wholly with the membranous wings. Looked at from beneath, we can at once see that some of the segments of the abdomen are partly or entirely sulphur yellow, and we recognize them as the lamp. If the specimen is a male, the yellow area covers all of the end of the abdomen up to the fourth or fifth segment; but if it is a female, only the middle portion of the abdomen, especially the fifth segment, is converted into a lamp. These yellow areas, when dissected under the
microscope, prove to be filled with fine tracheae, or air-tubes; and although we know very little about the way the light is made, it is believed that by flooding the tubes with air, the oxygen in some way produces the light.

In some species, the female is wingless and has very short wing-covers, and a portion of her body emits a steady, greenish light which tells her lord and master where to find her. These wingless females are called glow-worms.

Fireflies during their larval stages are popularly called wire worms, although there are many other beetle larvae thus called. In many of the species, the firefly eggs, larvae and pupae are all luminescent, but not so brilliant as when adults. The larva of the species here figured, was studied by C. V. Riley, who gave us an interesting account of its habits. It lives in the ground and feeds on soft-bodied insects, probably earth-worms. Each segment of this wire worm has a horny, brown plate above, with a straight white line running through the middle and a slightly curved white line on each side; the sides of the larva are soft and rose-colored; the white spiracles show against little, oval, brown patches. Beneath, the larva is cream color with two brown comma-like dots at the center of each segment. The head can be pulled back completely beneath the first segment. The most interesting thing about this larva is the prop-leg at the end of its body, which naturally aids it in locomotion; but this prop-leg also functions as a brush; after the larva has become soiled with too eager delving into the tissues of some earthworm, it curls its body over, and with this fan-shaped hind foot scrubs its head and face very clean. This is a rare instance of a larva paying any attention to its toilet.

When full-grown, the larva makes a little oval cell within the earth and changes to a pupa; after about ten days, the pupa skin is shed and the full-fledged beetle comes forth. The larva and pupa of this species give off light, but are not so brilliant as the adult. The pupils should be encouraged to study the early stages of the fireflies, because very little is known concerning them.

In Cuba a large beetle called the cucujo has two great oval spots on its thorax, resembling eyes, which give off light. The Cuban ladies wear cucujos at the opera, in nets, in the hair. I once had a pair which I tethered with gold chains to the bodice of my ball gown. The eye-spots glowed steadily, but with the movement of dancing, they grew more brilliant until no glittering diamonds could compete with their glow.

LESSON XCIV

The Firefly

Leading thought—When the firefly wishes to make a light, it can produce one that, if we knew how to make, would greatly reduce the price of artificial light; for the light made by fireflies and other creatures, requires less energy than any other light known.

Method—After the outdoor observations have been made, collect some of these beetles in the evening with a sweep net; place them under a
glass jar or tumbler, so that their light can be studied at close range. The next day give the observation lesson on the insects.

Observations—1. At what time of year do you see fireflies? Do they begin to lighten before it is dark? Do you see them high in the air or near the ground? Is the flash they give short, or long enough to make a streak of light? Do you see them on cold and windy nights or on warm, still, damp evenings? Make a note of the hour when you see the first one flash in an evening.

2. Catch a few fireflies in the night: put them under a glass jar. Can you see the light when they are not flashing? What color is it? When they make the flash can you see the outline of the "firefly lamp?" Watch closely and see if you think the flashing is a matter of will on the part of the firefly. Do you think the firefly is signaling to his mate when he flashes?

3. Study the firefly in daylight. Is it a fly or is it a beetle? What color is it above? When you look squarely down upon it, can you see its head and eyes?

4. Are the firefly's legs long or short? When a beetle has short legs is it a sign that it usually walks, runs or flies?

5. Describe the antennae. Are they in constant motion? What service do you think the firefly's antennae perform for it?

6. Lift one of the wing-covers carefully. What do you find beneath it? Does the beetle use its wing-covers to beat the air and help it during flight? How does the beetle hold its wing-covers when flying?

7. Turn the beetle on its back. Can you see the part of the body that flashes? What color is it?

8. Do you know the life history of the firefly? What is it like in its earlier stages? Where does it live? Does it have the power of making light when it is in the larval stage?

“There, in warm August gloaming,
With quick silent brightenings,
From meadow-lands roaming,
The firefly twinkles
His fitful heat-lightnings.”
—LOWELL

A Maybeetle flying, showing that the beetles hold the wing-covers stiff and still in flight, the hind wings doing the work.

Photo by M. V. Slingerland.
THE WAYS OF THE ANT

My child, behold the cheerful ant,
How hard she works, each day;
She works as hard as adamant
Which is very hard, they say.

—Oliver Herford.

ERY many performances on the part of the ant seem to us without reason; undoubtedly many of our performances seem likewise to her. But the more understandably we study her and her ways, the more we are forced to the conclusion that she knows what she is about; I am sure that none of us can sit down by an ant-nest and watch its citizens come and go, without discovering things to make us marvel.

By far the greater number of species of ants find exit from their underground burrows, beneath stones in fields. They like the stone for more reasons than one; it becomes hot under the noon sun and remains warm during the night, thus giving them a cozy nursery in the evening for their young. Some species make mounds, and often several neighboring mounds belong to the same colony, and are connected by underground galleries. There are usually several openings into these mounds. In case of some of the western species which make galleries beneath the ground, there is but one opening to the nest and Dr. McCook says that this gate is closed at night; at every gate in any ants' nest, there are likely to be sentinels stationed, to give warning of intruders.

As soon as a nest is disturbed, the scared little citizens run helter skelter to get out of the way; but if there are any larvae or pupae about, they are never too frightened to take them up and make off with them; but when too hard pressed, they will in most cases drop the precious burden, although I have several times seen an ant, when she dropped a pupa, stand guard over it and refuse to budge without it. The ant's eggs are very small objects, being oblong and about the size of a pin point. The larvae are translucent creatures, like rice grains with one end pointed. The pupae are yellowish, covered with a parchment-like sac, and resemble grains of wheat. When we lift stones in a field, we usually find directly beneath, the young of a certain size.

There are often, in the same species of ants, two sizes; the large ones are called majors and the smaller minors; sometimes there is a smaller size yet, called minim. The smaller sizes are probably the result of lack of nutrition. But whatever their size, they all work together to bring food for the young and in caring for the nest. We often see an ant carrying a dead insect or some other object larger than herself. If she cannot lift it or shove it, she turns around, and going backwards, pulls it along. It is rarely that we see two carrying the same load, although we have observed this several times. In one or two cases, the two seemed not to be in perfect accord as to which path to take. If the ants find some large supply of food, many of them will form a procession to bring it into the nest bit by bit; such processions go back by making a little detour so as not to meet and interfere with those coming. During most of the year, an ant colony consists only of workers and laying queens, but in early
summer the nest may be found swarming with winged forms which are the kings and queens. Some warm day these will issue from the nest and take their marriage flight, the only time in their lives when they use their wings; for ants, like seeds, seem to be provided with wings simply for the sake of scattering wide the species. It is a strange fact, that often on the same day swarms will issue from all the nests of one species in the whole region; by what mysterious messenger, word is sent that brings about this unanimous exodus, is still a mystery to us. This seems to be a provision for cross-breeding; and as bearing upon this, Miss Fielde discovered that an alien king is not only made welcome in a nest, but is sometimes seized by workers and pulled into a nest; this is most significant, since no worker of any other colony of the same species, is permitted to live in any but its own nest.

After the marriage flight, the ants fall to the ground and undoubtedly a large number perish; however, just here our knowledge is lamentably lacking, and observations on the part of pupils as to what happens to these winged forms will be valuable. In the case of most species, we know that a queen finds refuge in some shelter and there lays eggs. Mr. Comstock once studied a queen of the big, black carpenter ant which lives under the bark of trees. This queen, without taking any food herself, was able to lay her eggs and rear her first brood to maturity; she regurgitated food for this first brood, and then they went out foraging for the colony. However, Miss Fielde found that in the species she studied, the queen could not do this; a question most interesting to solve is whether any of the young queens, after the marriage flight, are adopted into other colonies of the same species. As soon as a queen begins laying eggs, she sheds her then useless wings, laying them aside as a bride does her veil.

When we are looking for ants' nests beneath stones, we often stumble upon a colony consisting of citizens differing in color. One has the head and thorax rust-red with the abdomen and legs brown; associated with this brown ant, is a black or ash-colored species. These black ants are the slaves of the brown species; but slavery in the ant world has its ameliorations. When the slave makers attack the slave nest, they do not fight the inmates unless they are obliged to. They simply loot the nest of the larvæ or pupæ, which they carry off to their own nests; and there they are fed and reared, as carefully as are their own young. The slaves seem to be perfectly contented, and conduct the household affairs of their masters with apparent cheerfulness. They do all the taking care of the
nest and feeding the young, but they are never permitted to go out with war parties; thus they never fight, unless their colony is attacked by marauders.

If one chances upon an ant battle, one must needs compare it to a battle of men before the invention of gunpowder; for in those days fighting was more gory and dreadful than now, since man fought man until one of the twain was slain. There is a great variation in military skill as well as in courage shown by different species of ants; the species most skilled in warfare, march to battle in a solid column and when they meet the enemy, the battle resolves itself into duels, although there is no code of ant honor which declares that one must fight the enemy single-handed. Although some ants are provided with venomous stings, our common species use their jaws for weapons; they also eject upon each other a very acid liquid which we know as formic acid. Two enemies approach each other, rear on their hind legs, throw this ant vitriol at each other, then close in deadly combat, each trying to cut the other in two. Woe to the one on which the jaws of her enemy are once set! For the ant has bulldog qualities, and if she once gets hold, she never lets go even though she be rent in pieces herself. At night the ant armies retreat to their citadels, but in the morning fare forth again to battle; and thus the war may be waged for days, and the battlefield be strewn with the remains of the dead and dying. So far as we are able to observe, there are two chief causes for ant wars; one is when two colonies desire the same ground, and the other is for the purpose of making slaves.

Perhaps the most interesting as well as most easily observed of all ant practices, are those that have to do with plant-lice, or aphids. If we find an ant climbing a plant of any sort, it is very likely that we shall find she is doing it for the purpose of tending her aphid herds. The aphid is a stupid little creature which lives by thrusting its bill or sucking tube into a stem or leaf of a plant, and thus settles down for life, nourished by the sap which it sucks up; it has a peculiar habit of exuding from its alimentary canal drops of honey-dew, when it feels the caress of the ant’s antennae upon its back. I had one year under observation, a nest of elegant little ants with shining triangular abdomens which they waved in the air like pennants when excited. These ants were most devoted attendants on the plant-lice infesting an evening primrose; if I jarred the primrose stem, the ants had a panic,
and often one would seize an aphid in her jaws and dash about madly, as if to rescue it at all hazards. When the ant wishes honey-dew, she approaches the aphid, stroking it or patting it gently with her antennae, and if a drop of the sweet fluid is not at once forthcoming, it is probably because other ants have previously exhausted its individual supply; if the ant gets no response, she hurries on to some other aphid not yet milked dry.

This devotion of ants to aphids has been known for a hundred years, but only recently has it been discovered to be of economic importance. Professor Forbes, in studying the corn root-louse, discovered that the ants care for the eggs of this aphid in their own nests during the winter, and take the young aphids out early in the spring, placing them on the roots of smartweed; later, after the corn is planted, the ants move their charges to the roots of the corn. Ants have been seen to give battle to the enemies of the aphid. The aphids of one species living on dogwood are protected while feeding by stables, which a certain species of ant builds around them, from a mortar made of earth and vegetable matter.

References—Ants, W. M. Wheeler, Ant Communities, McCook

LESSON XCV

FIELD OBSERVATIONS ON ANTS

Leading thought—However aimless to us may seem the course of the ant as we see her running about, undoubtedly if we understood her well enough, we should find that there is rational ant-sense in her performances. Therefore, whenever we are walking and have time, let us make careful observations as to the actions of the ants which we may see.

Method.—The following questions should be written on the blackboard and copied by the pupils in their note-books. This should be done in May or June, and the answers to the questions worked out by observations made during the summer vacation.

Observations—1. Where do you find ants' nests? Describe all the different kinds you have found. In what sort of soil do they make their nests? Describe the entrance to the nest. If the nest is a mound, is there more than one entrance? Are there many mounds near each other? If so, do you think they all belong to the same colony?

2. When the nest is disturbed, how do the ants act? Do they usually try to save themselves alone? Do they seek to save their young at the risk of their own lives? If an ant, carrying a young one is hard pressed, will she drop it?

3. Make notes on the difference in appearance of eggs, larva; and pupa in any ants' nest.

4. In nests under stones, can you find larva; and pupa assorted according to sizes?

5. How many sizes of ants do you find living in the same nest?

6. What objects do you find ants carrying to their nests? Are these for food? How does an ant manage to carry an object larger than herself? Do you ever see two ants working together carrying the same load?

7. If you find a procession of ants carrying food to their nest, note if they follow the same path coming and going.
8. If you find winged ants in a nest, catch a few in a vial with a few of the workers, and compare the two. The winged ants are kings and queens, the kings being much smaller than the queens.

9. If you chance to encounter a swarm of winged ants taking flight, make observations as to the size of swarm, the height above the ground, and whether any are falling to the earth.

10. Look under the loose bark of trees for nests of the big, black carpenter ant. You may find in such situations a queen ant starting a colony, which will prove most desirable for stocking an artificial ant’s nest.

11. If you find ants climbing shrubs, trees or other plants, look upon the leaves for aphids and note the following points:
 a. How does an ant act as she approaches an aphid?
 b. If the aphids are crowded on the leaf, does she step on them?
 c. Watch carefully to see how the ant touches the aphid when she wishes the honey-dew.
 d. Watch how the aphid excretes the honey-dew, and note if the ant eats it.
 e. If you disturb aphids which have ants tending them, note whether the ants attempt to defend or rescue their herds.
 f. If there are aphis-lions or ladybird larvae eating the aphids, note if the ants attack them.

12. If you find a colony of ants under stones where there are brown and black ants living together, the black members are the slaves of the brown. Observe as carefully as possible the actions of both the black and the brown inhabitants of the nest.

13. If you chance to see ants fighting, note how they make the attack. With what weapons do they fight? How do they try to get at the adversary?

14. Write an English theme covering the following points: How ants take their slaves; the attitude of masters and slaves toward each other; the work which the slaves do, and the story of the ant battle. How ants care for and use their herds.

References—American Insects, Kellogg; Manual for the Study of Insects, Comstock; Ants, McCook; True Tales, Jordan, page 6.

LESSON XCVI

How to Make the Lubbock Ant-nest

Material—Two pieces of window glass, 10 inches square; a sheet of tin, 11 inches square; a piece of plank, 1 1/4 inch thick, 20 inches long and at least 16 inches wide; a sheet of tin or a thin, flat board, 10 inches square.

To make the nest—Take the plank and on the upper side, a short distance from the edge, cut a deep furrow. This furrow is to be filled with water, as a moat, to keep the ants imprisoned. It is necessary, therefore, that the plank should have no knot holes, and that it be painted thoroughly to keep it from checking. Take the sheet of tin 11 inches square, and make it into a tray by turning up the edges three-eighths of an inch. Place this tray in the middle of the plank. Place within the tray one pane of glass. Lay around the edges of this glass four strips of wood about half an inch wide and a little thicker than the height of the ants which are to live in the nest. Cover the glass with a thin layer of fine earth. Take the remaining pane of glass and cut a triangular piece off
of one corner, then place the pane on top of the other, resting upon the pieces of wood around the sides. The cover of the nest may be a piece of tin, with a handle soldered to the center, or a board with a screw-eye in the center with which to lift it. There should be a piece of blotter or of very thin sponge, introduced into the nest between the two panes of glass, in a position where it may be reached with a pipette, without removing the upper glass, for it must be kept always damp.

To establish a colony in this nest proceed as follows: Take a two-quart glass fruit jar and a garden trowel. Armed with these, visit some pasture or meadow near by, and find under some stone, a small colony of ants which have plenty of eggs and larvae. Scoop up carefully eggs, ants, dirt and all and place in the jar, being as careful as possible not to injure the specimens. While digging, search carefully for the queen, which is a larger ant and is sometimes thus found. But if you have plenty of eggs, larvae and pupae, the ants will become very contented in their new nest while taking care of them. After you have taken all the ants desirable, place the cover on the jar, carry them to the Lubbock nest and carefully empty the contents of the fruit jar on top of the board which covers the nest. Of course the furrow around the plank has been filled with water, so the stragglers cannot escape. The ants will soon find the way into the nest through the cut corner of the upper pane of glass, and will transfer their larvae to it because it is dark. After they are in the nest, which should be within two or three hours, remove the dirt on the cover, and the nest is ready for observation. But, since light disturbs the little prisoners, the cover should be removed only for short periods.

The Fielde nest is better adapted for a serious study of ants, but it is not so well adapted for the schoolroom as is the Lubbock nest.

Reference—Ants, W. M. Wheeler.
THE ANT-NEST, AND WHAT MAY BE SEEN WITHIN IT

Teacher's Story

Ant anatomy becomes a very interesting study when we note the vigorous way the ant uses it—even to the least part. The slender waist characterizes the ant as well as the wasp; the three regions of the body are easily seen, the head with its ever moving antennae, the slender thorax with its three pairs of most efficient legs, and the long abdomen. The ant's legs are fairly long as compared with the size of the body and the ant can run with a rapidity that, comparatively, would soon outdistance any Marathon runner, however famed. I timed an ant one day when she was taking a constitutional on my foot rule. She was in no hurry, and yet she made time that if translated into human terms would mean 16 yards per second. In addition to running, many ants when frightened will make leaps with incredible swiftness.

The ant does not show her cleverness in her physiognomy, probably because her eyes seem small and dull and she has a decidedly "retreating forehead;" but the brain behind this unpromising appearance is far more active and efficient than that behind the gorgeous great eyes of the dragon-fly or behind the "high brow" of the grasshopper. The ant's jaws are very large compared with her head; they work sidewise like a pair of shears and are armed with triangular teeth along the biting edges; these are not teeth in a vertebrate sense, but are like the teeth of a saw. These jaws are the ant's chief utensils and weapons; with them she seizes the burdens of food which she carries home; with them she gently lifts her infant charges; with them she crushes and breaks up hard food; with them she carries out soil from her tunnel, and with them she fights her enemies. She also has a pair of long palpi, orfeelers.

Although her eyes are so small and furnished with coarse facets, as compared with other insects, this fact need not count against her, for she has little need of eyes. Her home life is passed in dark burrows where her antennae give her information of her surroundings. Note how these antennae are always moving, seeming to be atremble in eagerness to receive sensations. But aside from their powers of telling things by the touch, wherein they are more delicate than the fingers of the blind, they have other sense organs which are comparable to our sense of smell. Miss Fielde has shown that the five end segments of the antennae have each its own powers in detecting odor. The end segment detects the odor of the ant's own nest and enables her to distinguish this from other nests. The next, or eleventh segment, detects the odor of any descendant of the same queen; by this, she recognizes her sisters wherever she finds them. Through the next, or tenth segment, she recognizes the odor of her own feet on the trail, and thus can retrace her own steps. The eighth and ninth segments convey to her the intelligence and means of caring for the young. If an ant is deprived of these five end-joints of the antennae, she loses all power as a social ant and becomes completely disenfranchised. Miss Fielde gives her most interesting experiments in detail in the Pro-
ceedings of the Academy of Natural Sciences of Philadelphia, July and October, 1901.

It is natural enough that the ant, depending so much on her antennæ for impressions and stimuli, should be very particular to keep them clean and in good order. She is well equipped to do this, for she has a most efficient antennæ brush on her wrist; it is practically a circular comb, which just fits over the antenna; and to see the ants using these brushes is one of the most common sights in the ant-nest and one of the most amusing. The ant usually commences by lifting her leg over one antenna and deftly passing it through the brush, and then licks the brush clean by passing it through her mouth, as a cat washes her face; then she cleans the other in a similar manner and possibly finishes by doing both alternately, winding up with a flourish, like a European gentleman curling his mustaches. Her antennæ cleaned, she starts promptly to do something, for she is a little six-footed Martha, always weighed down or buoyed up by many duties and cares. Keeping her antenna on the qui vive, she assures herself, by touch, of the nature of any obstacle in her path. If she meets another ant, their antennæ cross and pat each other, and thus they learn whether they are sisters or aliens; some time with their antennæ fluttering. One who has watched ants carefully, is compelled to believe that they thus convey intelligence of some sort, one to the other. The ant is a good sister “according to her lights,” if her sister is hungry, she will give to her, even from her own partially digested food; the two will often stand mouth to mouth for some minutes during this process; if she feels inclined, she will also help a sister at her toilet, and lick her with her tongue as one cow licks another. The tongue of the ant is very useful in several ways; with it she takes up liquids, and also uses it with much vigor as a washcloth. Sometimes an ant will spend a half hour or more at her own toilet, licking every part of her own body that her tongue can reach, meanwhile going through all sorts of contortions to accomplish it; she uses her feet to scrub portions of her body, not to be reached by her tongue.

But it is as infant nurse that the ant is a shining example. No mother instinct is hers, for she has yielded the power of motherhood to the exigencies of business life, since all workers are females but are undeveloped sexually. She shows far more sense in the care of her infant sisters, than the mother instinct often supplies to human mothers.
The ant nurse takes the eggs as soon as laid, and whether or not her care retards or hastens hatching we know not; but we do know, that although the queen ant may not lay more than two eggs per day, a goodly number of these seem to hatch at the same time. The eggs are massed in bundles and are sticky on the outside so as to hold the bundle together. Miss Fielde says, as the eggs are hatching, one ant will hold up the bundle, while another feeds those which have broken the shell. The larvae, when young, also hang together by means of tiny hooks on their bodies. This habit of the eggs and young larvae is a convenient one, since an ant is thus able to carry many at a time.

The larvae are odd looking little creatures, shaped like crookneck squashes, the small end being the head and neck and the latter being very extensible. The ant nurses, by feeding some more than others, are able to keep a brood at the same stage of development; and in a well ordered ant-nest, we find those of the same size in one nursery. I have often thought of a graded school as I have noted in ant-nests the youngsters assorted according to size.

The ants seem to realize the cost and care of rearing their young; and when a nest is attacked, the oldest, which are usually in the pupa stage, are saved first. When the larvae are young, they are fed on regurgitated food; but as they grow older, the food is brought to them, or they to the food, and they do their own eating. In one of my nests, I placed part of the yolk of an egg hard boiled, and the ant nurses dumped the larvae down around the edges of it; then they munched industriously, until through their transparent bodies I could see the yellow of the egg the whole length of the alimentary canal. The ant nurses are very particular about temperatures for their young, and Miss Fielde says they are even more careful about draughts. Thus they are obliged to move them about in the ground nests, carrying them down to the lower nurseries in the heat of the day, and bringing them up, nearer to the warm stones, during the evenings. This moving is always done carefully, and though the ant's jaws are such formidable nippers, she carries her baby sisters with gentleness; and if they be pupae, she holds them by the loose pupal skin, like carrying a baby by its clothes. The pupae look like plump little grain bags, tied at one end with a black string. They are the size of small grains of wheat, and are often called ants' eggs, which is absurd, since they are almost as large as the ant. Ants' eggs are not larger than pin points.

The ant nurses keep the larvae and pupae very clean by licking them; and when a youngster issues from the pupa skin, it is a matter of much interest to the nurses. I have often seen two or three of them help straighten out the cramped legs and antennæ of the young one, and hasten to feed her with regurgitated food. When ants first issue from the pupa skin they are pale in color, their eyes being very black in contrast; they are usually helpless and stupid, although they often try to clean their antennæ and make a toilet; but they do not know enough to follow their elders from one room to another, and they are a source of much care to the nurses. In case of moving, a nurse will lock jaws with a "callow," as a freshly hatched adult ant is called, and drag her along, the legs of the callow sprawling helplessly meanwhile. If in haste, the nurse takes hold anywhere, by the neck or the leg, and hustles her charge along; if she takes her by the waist the callow curls up like a kitten, and is thus more easily moved. After moving them from one chamber to the next, I have noticed
that the callows are herded together, their attendants ranged in a circle about them. Often we see one ant carrying another which is not a callow, and this means that a certain number of the colony have made up their minds to move, while the others are not awake to this necessity. In such a case, one of these energetic sisters will seize another by the waist, and carry her off with an air that says plainly, "Come along, you stupid!"

Ants are very cleanly in their nests, and we find the refuse piled in a heap at one corner, or as far as possible from the brood.

If we are fortunate enough to find a queen for the nest, then we may observe the attention she gets; she is always kept in a special compartment, and is surrounded by ladies in waiting, who feed her and lick her clean and show solicitude for her welfare; although I have never observed in an ants' nest, that devotion to royalty which we see in a beehive.

Not the least interesting scene in an ants' nest is when all, or some, are asleep and are as motionless as if dead.

LESSON XCVII

Observations of Ants in an Artificial Nest

Leading thought—The ants are very devoted to their young and perhaps the care of them is the most interesting feature in the study of the artificial nest.

Method—Have, in the schoolroom, a Lubbock's nest with a colony of ants within it, with their larvae in all stages, and if possible, their queen. For observing the form of the ant, pass one or two around in a vial.

Observations—1. What is there peculiar about the shape of the ant's body? Can you see which section bears the legs? Are the ants' legs long compared with her body? Can she run rapidly?
2. Look at the ant's head through a lens, and describe the antennæ, the jaws and the eyes.
3. Note how the ant keeps her antennæ in motion. Note how she gropes with them as a blind person with his hands. Note how she uses them in conversing with her companions.
4. How does the ant clean her antennæ? Does she clean them more often than any other part of her body? How does she make her toilet?
5. See how an ant eats syrup. How do ants feed each other?
6. How does the ant carry an object? How does she carry a larva or a pupa? Have you ever seen one ant carry another? If so, describe it.
7. Note the way the ants feed their young. How do they keep them clean? Does an ant carry one egg or one small larva at a time or a bundle of them? How do you suppose the bundle is fastened together?
8. Describe an egg, a larva and a pupa of the ant and tell how they differ. Do you know which ant is the mother of the larvae in the nest?
9. Do you find larvae of different sizes all together in your nest? Do you find larvae and pupæ in the same group? Do the ants move the young often from one nest to another? Why do you suppose they do this?
10. Note how the ant nurses take care of the callow ant when it is coming out from the pupa skin. How do they assist her and care for her? How do they lead her around? How do ants look when resting?
11. Note where the ants throw the refuse from the nest. Do they ever change the position of this dump heap?
THE MUD-DAUBER
Teacher's Story

This little cement worker is a nervous and fidgety creature, jerking her wings constantly as she walks around in the sunshine; but perhaps this is not nervousness, but rather to show off the rainbow iridescence of her black wings; surely such a slim-waisted being as she, has a right to be vain. No tight lacing ever brought about such a long, slim waist as hers; it is a mere pedicel and the abdomen is a mere knob at the end of it. The latter seen from the outside, would seem of little use as an abdomen; but if we watch the insect flying, we can see plainly that it is used to steer with.

In early summer, we find this black wasp at her trade as a mason. She seeks the edges of pools or puddles where she works industriously, leaving many little holes whence she takes mud to mix with the saliva, which she secretes from her mouth to make firm her cement. This cement she plasters on the under side of some roof or rafter or other protected place, going back and forth until she has built a suitable foundation. She works methodically, making a tube about an inch long, smooth inside but rough outside, the walls about one-eighth of an inch thick. She does all of the plastering with her jaws, which she uses as a trowel. When the tube is completed except that the end is left open, she starts off in quest of spiders, and very earnestly does she seek them. I have seen her hunt every nook and corner of a piazza for this prey. When she finds a spider, she pounces upon it and stings it until it is helpless, and carries it to her cement tube, which is indeed a spider sarcophagus, and thrusts it within. She brings more spiders until her tube is nearly full; she then lays an egg within it and then makes more cement and neatly closes the door of the tube. She then places another tube by the side of this, which she provisions and closes in the same way; and then she may make another and another tube, often a half dozen, under one adobe roof.

The wasp in some mysterious way knows how to thrust her sting into the spider's nervous system in a peculiar way, which renders her victim unable to move although it yet lives. The wasp is no vegetarian like the bee, and she must supply her young with wasp-meat instead of bee-bread. Since it is during the summer and hot weather when the young wasps are hatched and begin their growth, their meat must be kept fresh for a period of two or three weeks. So these paralyzed spiders do not die, although they are helpless. It is certainly a practical joke with justice in it, that these ferocious creatures lie

Nests of a mud-dauber on the back of a picture frame.
helpless while being eaten by a fat little grub which they would gladly devour, if they could move.

The wasp larva is a whitish, plump grub and it eats industriously until the spider meat is exhausted. It then weaves a cocoon of silk about itself which just covers the walls of its home tube, like a silken tapestry; within this cocoon the grub changes to a pupa. When it finally emerges, it is a full-grown wasp with jaws which are able to cut a door in the end of its tube, through which it comes out into the world, a free and accepted mason. The females or queens, which issue late in the season, hide in warm or protected places during the winter; they particularly like the folds of lace window curtains for hibernating quarters. There they remain until spring comes, when they go off to build their plaster houses.

There are about seventy species of mud wasps in our country. Some provision their nests with caterpillars instead of spiders. This is true of the jug-builder, which makes her nest jug-shaped and places two or three of them side by side upon a twig. She uses hair in her mortar, which makes it stronger. This is necessary, since the jug is saddled upon twigs and is more exposed to the rain than is the nest of the most common mud-dauber. The jug-builder is brown in color and has yellow markings on the abdomen; but she does not resemble the yellow-jackets, because she has a threadlike waist. There are other species of mud wasps which use any small cavity they can find for the nest, plastering up the opening after the nest has been provisioned and the egg laid. We often find keyholes, knot-holes and even the cavity in the telephone receiver, plastered up by these small opportunists.

The mud-dauber which is the most common, and most likely to be selected for this lesson, is a slender creature and looks as if she were made of black tinsel; her body gives off glints of steel and blue; her abdomen constantly vibrates with the movement of breathing. Her eyes are large and like black beads; her black antenna curve gracefully outward, and her wings, corrugated with veins, shimmer with a smoky blue, green and purple. She stands on her black tip-toes when she walks, and she has a
way of turning around constantly as if she expected an attack from the rear. Her wings, like those of other mud-wasps are not folded fan-wise like those of the yellow-jacket, but are folded by each other over her back.

The Mud-dauber and her nests.

LESSON XCVIII
The Mud-dauber

Leading thought—There are certain wasps which gather mud and mix it into mortar with which to build nests for their young. Within these nests, the mother wasp places spiders or insects which are disabled by her sting, for the food of the young wasps.

Method—Have the pupils bring the homes of the mud wasps to school for observation. The wasps themselves are very common in June and also in September, and they also may be studied at school and may be passed around in vials for closer observation; they do not sting severely when handled, the sting being a mere prick. The purpose of the lesson should be to stimulate the pupils to watch the mud-daubers while building their nests and capturing their prey.

Observations—1. Where did you find the mud-dauber’s nest? How was it protected from the rain? Was it easily removed? Could you remove it all, or did some of it remain stuck fast?

2. What is the shape of the nest? How does it look inside? Of how many tubes does it consist? How long is each tube? Were the tubes laid side by side?

3. Of what material was the nest made? Is it not much harder than mud? How did the wasp change the mud to cement? Where did she get the mud? How did she carry it? With what tools did she plaster it?

4. For what purpose was the nest made? Is the inside of the tubes smooth as compared with the outside of the nest?

5. Write a little story about all that happens in one of these tubes, including the following points: What did the mother wasp place in the tube? How and why did she close it? What hatched from the egg she placed within it? How does the young wasp look? On what does it feed? What sort of a cocoon does it spin? How does it get out of the nest when full-grown?
6. Describe the mud-dauber wasp. How large is she? What is the color of her body? Of her wings? How many wings has she? How are her wings folded differently from those of the yellow-jacket? Describe her eyes; her antennæ; her legs; her waist; her abdomen.

7. Where did you find the wasp? How did she act? Do you think that she can sting? How does she pass the winter?

8. Do you know the mud wasps which build the little, jug-shaped nests for their young? Do you know the mud wasps which utilize crevices and keyholes for their nests and plaster up the opening?

9. Do you know about the digger wasps which pack away grasshoppers or caterpillars in a hole in the ground, in which they lay their egg and then cover it?

THE YELLOW-JACKET

Teacher’s Story

ANY wasps are not so waspish after all when we understand one important fact about them; i.e., although they are very nervous themselves, they detest that quality in others. For years the yellow-jackets have shared with us our meals at our summer camp on the lake shore. They make inquisitive tours of inspection over the viands on the table, often seeming to include ourselves, and coming so near that they fan our faces with their wings. They usually end by selecting the sweetened fruits, but they also carry off bits of roast beef, pouncing down upon the meat platter and seizing a tidbit as a hawk does a chicken. We always remain calm during these visitations, for we know that unless we inadvertently pinch one, we shall not be harmed; and it is great fun to watch one of these graceful creatures poising daintily on the side of the dish lapping up the fruit juice as a cat does milk, the slender, yellow-banded abdomen palpating as she breathes. Occasionally, two desire the same place, and a wrestling match ensues which is fierce while it lasts, but the participants always come back to the dish unharmed. They are extra polite in their manners, for after one has delved eagerly into the fruit syrup, she proceeds to clean her front feet by passing them through her jaws, which is a wasp way of using a finger bowl.

Both yellow-jackets and the white-faced black-hornets build in trees and similarly, although the paper made by the yellow-jackets is finer in texture. However, some species of yellow-jackets build their nests in the ground, but of similar form. The nest is of paper made of bits of wood which the wasps pull off with their jaws from weather-worn fences or boards. This wood is reduced to a pulp by saliva which is secreted from the wasp’s mouth, and is laid on in little
layers which can be easily seen by examining the outside of the nest. These layers may be of different colors. A wasp will come with her load of paper pulp, and using her jaws and front feet for tools she will join a strip to the edge of the paper and pat it into shape. The paper tears more readily along the lines of the joining, than across. The cover of the nest is made of many layers of shell-like pieces fastened together and the outer layers are waterproof; the opening of a nest is at the bottom. Mr. Lubbock has shown that certain wasps are stationed at the door, as sentinels, to give warning on the approach of the enemy. The number of stories of combs in a nest depends upon the age and size of the colony. They are fastened together firmly near the center, by a central core or axis of very strong, firm paper, which at the top is attached to a branch or whatever supports the nest. The cells all open downward, in this respect differing from those of the honey-bee, which are usually placed horizontal. The wasp-comb differs from the honey-comb in that it is made of paper instead of wax, and that the rows of cells are single instead of double. The cells in the wasp-comb are not for storing honey, but are simply the cradles for the young wasps. (See Fig. p. 457.)

Sometimes a wasp family disaster makes it possible for us to examine one of these nests with its inmates. Here we find in some of the cells, the long white eggs fastened to the very bottom of the cell, in an inner angle, as if a larva when hatched needed to have a cozy corner. These wasp larvae are the chubbiest little grubs imaginable and are very soft bodied. It was once a mystery to me how they were able to hang in the cells, head down, without getting “black in the face” or falling out; but this was made plain by studying the little disk at the rear end of the larva’s body, which is decidedly sticky; after a larva is dead, its heavy body can be lifted by pressing a match against this disk; thus it evidently suffices to keep the baby wasp stuck fast to its cradle. The larva’s body is mostly covered with a white, papery, soft skeleton skin; the head is yellowish and highly polished, looking like a drop of honey. At one side may be seen a pair of toothed jaws, showing that it is able to take and chew any food brought by the nurses. They seem to be well trained youngsters for they all face toward the center of the nest, so that a nurse, when feeding them, can move from one to another without having to pass to the other side of the cell. It is a funny sight to behold a combful of well grown larvae, each fitting in its cell like meal in a bag and with head and several segments projecting out as if the bag were overflowing. It behooves the wasp larva to get its head as far out of the cell as possible, so that it will not be overlooked by the nurses; the little ones do this by holding themselves at the angle of the cell; this they accomplish by wedging the back into the corner. These young larvae do not face inwards like the older ones, but they rest in an inner angle of the cell.

After a larva has reached the limit of its cell room, it spins a veil around itself and fastens it at the sides, so that it forms a lining to the upper part of the cell and makes a bag over the “head and shoulders” of the insect. This cocoon is very tough, and beneath its loose dome the larva skin is shed; the pupa takes on a decidedly waspish form, except that the color is all black; the legs and the wings are folded piously down the breast and the antennae lie meekly each side of the face, with the “hands” folded outside of them; the strong toothed jaws are ready, so that when the pupa skin is molted, the insect can cut its silken curtain, and come out into its little nest world, as a full-fledged yellow-jacket.
What a harlequin the wasp is, in her costume of yellow and black! Often in the invertebrate world these colors mean "sit up and take notice," and the wasp's costume is no exception. Whoever has had any experience in meddling with yellow-jackets, avoids acquaintance with all yellow and black insects. Yet we must confess that the lady wasp has good taste in dress. The yellow cross bands on her black skirt are scalloped, and, in fact, all her yellow is put on in a most chic manner; she, being slender, can well afford to dress in roundwise stripes, and she folds her wings prettily like a fan, and not over her back like the mud wasp, which would cover her decorations. There is a sensation coming to the one who, armed with a lens, looks a wasp in the face; she always does her hair pompadour, and the yellow is here put on with a most bizarre effect, in points and arabesques. Even her jaws are yellow with black borders and black notches. Her antennae are velvety black, her legs are yellow, and her antennae comb, on her wrist, is a real comb and quite ornate.

In the nest which we studied in late August, the queen cells were just being developed. They were placed in a story all by themselves, and they were a third larger than the cells of the workers. The queen of this nest was a most majestic wasp, fully twice as large as any of her subjects; her face was entirely black, and the yellow bands on her long abdomen were of quite a different pattern than those on the workers; her sting was not so long in proportion, but I must confess it looked efficient. In fact, a yellow-jacket's sting is a formidable looking spear when seen through a microscope, since it has on one side some backward projecting barbs, meant to hold it firm when driving home the thrust.

While wasps are fond of honey and other sweets, they are also fond of animal food and eat a great many insects, benefiting us greatly by destroying mosquitoes and flies. As no food is stored for their winter use, all wasps excepting the queens die of the cold. The queens crawl away to protected places and seem to be able to withstand the rigors of winter; each queen, in the spring, makes a little comb of a few cells, covering it with a thin layer of paper. She then lays eggs in these cells and gathers food for the young; but when these first members of the family, which are always workers, come to maturity, they take upon themselves the work of enlarging the nest and caring for the young. After that, the queen devotes her energies to laying eggs.

Wasps enlarge their houses by cutting away the paper from the inside of the covering, to give more room for building the combs wider; to compensate for this, they build additional layers on the outside of the nest. Thus it is, that every wasp's nest, however large, began as a little comb of a few cells and was enlarged to meet the needs of the rapidly growing family. Ordinarily the nest made one year is not used again.
LESSON XCIX
The Yellow-Jacket

Leading thought—The wasps were the original paper makers, using wood pulp for the purpose. Some species construct their houses of paper in the trees or bushes while others build in the ground.

Method—Take a deserted wasp-nest, the larger the better, with sharp scissors remove one side of the covering of the nest, leaving the combs exposed and follow with the questions and suggestions indicated. From this study of the nest encourage the children to observe more closely the wasps and their habits, which they can do in safety if they learn to move quietly while observing. (See Fig. page 457.)

Observations—1. Which kind of wasp do you think made this nest? Of what is the nest made? Where did the wasp get the material? How do the wasps make wood into paper?
2. What is the general shape of the nest? Is the nest well covered to protect it from rain? Where is the door where the wasps went in and out? Is the covering of the nest all of the same color? Do these differences in color give you any idea of how the wasps build the paper into the nest? Does the paper tear more easily one way than another? Is the covering of the nest solid or in layers?
3. How many combs or stories are there in the wasp house? How are they fastened together and how suspended?
4. Compare the combs of the wasp-nest with those of the honey-bee. How do they resemble each other and how differ? Do the cells open upward or downward? For what purpose are the combs in the wasp-nest used? Are all the cells of the same size? Do you know the reason for this difference in size?
5. How do the young wasp grubs manage to cling to the cells head downward? Are the cells lined with a different color and does this lining extend out over the opening in some cases? Is this lining of the cells made of paper also? Do you know how a young wasp looks and how the white lining of the cells is made?
6. Do you believe that some wasps of the colony are always posted as sentinels at the door to give warning if the colony is attacked?
7. Do wasps store food to sustain them during the winter? What happens to them during winter? Is the same nest used year after year?
8. Can you describe the beginning of this wasp-nest? When was it made? Tell the story of the wasp that made it. How large was the nest at first? How was the nest enlarged?
9. What is the food of wasps? How do these insects benefit us?
10. Write a story giving the life history of a wasp.
11. In the summer watch a yellow-jacket eat from a dish of sweetened fruit which you may place out of doors to coax her to come where you can carefully observe her. What are the colors of the yellow-jacket? Where is the yellow? How are the yellow bands made ornamental? How does she fold her wings? How many wings has she? What is the color of her legs? Describe her antennæ and eyes. How does she eat the fruit juice? Can you see the motion of her body when she breathes?
THE LEAF-CUTTER BEE

Teacher's Story

ONE beautiful day in late June when I was picking some roses, I saw a bee, almost as large as a honey-bee but different in shape and darker in color, alight on a leaf and moving with nervous rapidity, cut a circle out of a leaf with her jaws "quicker'n a wink;" then taking the piece between her fore-feet and perhaps holding it also with her jaws, she flew away, the green disk looking as large in proportion to her size as a big base drum hung to the neck of a small drummer. I waited long for her to come back, but she came not; meanwhile I examined the leaves of the rose bush and found many circlets, and also many oblong holes with the ends deeply rounded, cut from the leaflets.

I knew the story of the little bee and was glad I had seen her cut a leaflet with her jaw shears, which work sidewise like real shears. I knew that somewhere she had found a cavity big enough for her needs; perhaps she had tunneled it herself in the dead wood of some post or stump, using her jaws to cut away the chips; maybe she had found a crevice beneath the shingles of a roof or beneath a stone in the field, or she may have rolled a leaf; anyway, her little cave was several inches long, circular in outline and large enough to admit her body. She first cut a long piece from the rose leaf and folded it at the end of the tunnel; and then she brought another and another long piece and bent and shaped them into a little thimble-like cup, fastening them together with some saliva glue, from her mouth. After the cup was made to her liking, she went in search of food, which was found in the pollen of some flowers. This pollen was carried not as the honey-bees do, because she has no pollen baskets on her legs; but it was dusted into the fur on the lower side of her body; as she scraped the pollen off, she mixed it with some nectar which she had also found in the flowers, and made it into a pasty mass and heaped it at the bottom of the cup; she probably made many visits to flowers before she had a sufficient amount of this bee pastry, and then she laid an egg upon it; after this, she immediately flew back to the rose bush to cut a lid for her cup. She is a nice mathematician and she cuts the lid just a little larger than the rim of the cup, so that it may be pushed down in, making it fit very closely around the edges; she then cuts another and perhaps another of the same size and puts them over and fastened to the first cover. When finished, it is surely the prettiest baby basket ever made by a mother, all safely enclosed to keep out enemies. But her work is then only begun. She has other baby baskets to make and she perhaps makes ten or more, placing one cup just ahead of another in the little tunnel.

But what is happening meanwhile to the bee babies in the baskets? The egg hatches into a little white bee grub which falls to and eats the pollen and nectar paste with great eagerness. As it eats, it grows and sheds its skeleton skin as often as it becomes too tight, and then eats and grows some more. How many mothers would know just how much food it would require to develop a child from infancy until it grows up! This bee mother knows well this amount and when the food is all gone, the little bee grub is old enough to change to a pupa; it looks very different now,
and although mummy-shaped we can see its folded wings and antennae. After remaining a motionless pupa for a few days, it sheds its pupa skin and now it is a bee just like its mother; but as the oldest bee is at the bottom of the tunnel, even after it gets its wings and gnaws its way out of its basket, it very likely cannot escape and find its way out into the sun-shiny world, until its younger brothers and sisters have gone out before it.

There are many species of these leaf-cutter bees and each species makes its own kind of a nest, always cutting the same size of circlets and usually choosing its own special kind of leaf to make this cradle. Some are daintier in their tastes and use rolled petals instead of leaves; and we have found some tiny cups made of gorgeous peony petals, and some of pansy petals, a most exquisite material.

At Chautauqua we found a species which rolled maple leaves into a tube which held three or four cups, and we also found there a bee stowing her cups in the open end of a tubular rod, used to hold up an awning. There are other species which make short tunnels in the ground for their nests, but perhaps the most common of all wedge their cups between or beneath the shingles on the roofs of summer cottages. But, however or wherever the leaf-cutter works, she is a master mechanic and does her work with niceness and daintiness.
LE Slug C

THE LEAF-CUTTER BEE

Leading thought—When we see the edges of rose leaves with holes of regular pattern in them, some of the holes being oblong and some circular, we know the leaf-cutter bee has cut them to make her cradle cups.

Method—It is very easy to find in June or autumn the leaves from which the leaf-cutter bee has cut the bedding for her young. Encourage the pupils to look for the nest during the summer and to bring some of the cups to school when they return, where they may be studied in detail; meanwhile the teacher may tell the story of the nest. This is rather difficult for the pupils to work out.

Observations—1. Do you find rose leaves with round holes cut in their edges? Do you find on the same bush some leaflets with oblong holes in them? Sketch or describe the rose leaf thus cut, noting exactly the shape of the holes. Are the circular holes of the same size? Are the long holes about equal in size and shape? Do you find any other plants with holes like these cut in them? Do you find any petals of flowers thus cut?

2. What do you think made these holes? If an insect was taking a leaf for food would the holes be as regular? Watch the rose bush carefully and see if you can discover the insect which cuts the leaf.

Leaf-cutter bee; the rose leaf cut by her; her nest-cups removed from the tube in which they were built, the cup made first cut open to show bee larva.

Photo by Slingerland.
3. Have you ever seen the little black bee carrying pieces of rose leaves between her front feet? With what instrument do you suppose she cut the leaves? Where do you think she was going?

4. Have you ever found the nest of the leaf-cutter bee? Was it in a tunnel made in dead wood or in some crack or cranny? How many of the little rose leaf cups are there in it? How are the cups placed? Are the little bees still in the cups or can you see the holes through which they crawled out?

5. Take one cup and study it carefully. How are the pieces of leaves folded to make the cups? How is the lid put on? Soak the cup in water until it comes apart easily. Describe how many of the long pieces were used and how they were bent to make a cup. Of how many thicknesses is the cover made? Are the covers just the same size or a little larger than the top of the cup? How does the cover fit so tightly?

6. If you find the nest in July or early August, examine one of the cups carefully and see what there is in it. Take off the cover without injuring it. What is at the bottom of the nest? Is there an insect within it? How does it look? What is it doing? Of what do you think its food was made? How and by whom was the food placed in the cup? Place the nest in a box or jar with mosquito netting over the top, and put it out of doors in a safe and shaded place. Look at it often and see what this insect changes into.

7. If the mother bee made each little nest cup and put in the bee-bread and honey for her young, which cup contains the oldest of the family? Which the youngest? How do you think the full-grown bees get out of the cup?

8. Do you think that the same species of bee always cuts the same sized holes in a leaf? Is it the same species which cuts the rose leaves and the pansy petals?

THE LITTLE CARPENTER-BEE

Teacher's Story

AKE a dozen dead twigs from almost any sumac or elder, split them lengthwise, and you will find in at least one or two of them, a little tunnel down the center where the pith once was. In the month of June or July, this narrow tunnel is made into an insect apartment house, one little creature in each apartment, partitioned off from the one above and the one below. The nature of this partition reveals to us whether the occupants are bees or wasps; if it is made of tiny chips, like fine sawdust glued together, a bee made it and there are little bees in the cells; if it is made of bits of sand or mud glued together, a wasp was the architect and young wasps are the inhabitants. Also, if the food in the cells is pollen paste, it was placed there by a bee; if of paralyzed insects or spiders, a wasp made the nest.

The little carpenter-bee (Ceratina dupla) is a beautiful creature, scarcely one-quarter of an inch in length, with metallic blue body and
rainbow tinted wings. In May, she selects some broken twig of sumac, elder or raspberry, which gives her access to the pith; this she at once begins to dig out, mouthful by mouthful, until she has made a smooth tunnel several inches long; she then gathers pollen and packs bee-bread in the bottom of the cell to the depth of a quarter-inch, and then lays upon it, a tiny white egg. She then brings back some of her chips of pith and glues them together, making a partition about one-tenth of an inch thick, which she fastens firmly to the sides of the tunnel; this is the roof for the first cell and the floor of the next one; she then gathers more pollen, lays another egg, and builds another partition.

Thus she fills the tunnel, almost to the opening, with cells, sometimes as many as fourteen; but she always leaves a space for a vestibule near the door, and in this she makes her home while her family below her are growing up.

The egg in the lowest cell of course hatches first; a little bee grub issues from it and eats the bee-bread industriously and grows by shedding his skin when it becomes too tight; then he changes to a pupa and later to a bee resembling his mother. But, though fully grown, he cannot get out into the sunshine, for all his younger brothers and sisters are blocking the tunnel ahead of him; so he simply tears down the partition above him and kicks the little pieces of it behind him, and bides his time until the next youngest brother tears down the partition above his head and pushes its fragments behind him into the very face of the elder which, in turn, performs a similar act; and thus, while he is waiting, he is kept more or less busy pushing behind him the broken bits of all the partitions above him. Finally, the youngest gets his growth, and there they all are in the tunnel, the broken partitions behind the hindmost at the bottom of the nest, and the young bees packed closely together in a row with heads toward the door. When we find the nest at this period, we know the mother because her head is toward her young ones and her back to the door. A little later, on some bright morning, they all come out into the sunshine and flit about on gauzy, rainbow wings, a very happy family, out of prison.

But if the brood is a late one, the home must be cleaned out and used as a winter nest, and still the loyal little mother bee stays true to her post; she is the last one to enter the nest; and not until they are all housed within, does she enter. It is easy to distinguish her for her poor wings are torn and frayed with her long labor of building the nest, until they scarcely serve to carry her afield; but despite this she remains on guard over her brood, for which she has worn out her own life.
The story of the little carpenter-wasps is similar to that of the bee, except that we have reason to believe they often use her abandoned tunnels instead of making new ones. They make their little partitions out of mud; their pupae are always in long, slender, silken cocoons, and we have no evidence that the mother remains in attendance.

LESSON CI
THE LITTLE CARPENTER-BEE

Leading thought—Not all bees live in colonies like the honey-bees and bumblebees. One tiny bee rears her brood within a tunnel which she makes in the pith of sumac, elder or raspberry.

Method—This lesson may be given in June or in October. In June, the whole family of bees in their apartments may be observed; in autumn, the empty tenement with the fragments of the partitions still clinging may be readily found and examined; and sometimes a whole family may be found, stowed away in the home tunnel, for the winter.

Observations—1. Collect dead twigs of sumac or elder and cut them in half, lengthwise. Do you find any with the pith tunneled out?

2. How long is the tunnel? Are its sides smooth? Can you see the partitions which divide the long narrow tunnel into cells? Look at the partitions with a lens, if necessary, to determine whether they are made of tiny bits of wood or of mud. If made of mud, what insect made them? If of little chips—how and by what were they constructed?

3. Are there any insects in the cells? If so, describe them. Is there bee-bread in the cells?

4. For what was the tunnel made? With what tools was it made? How are the partitions fastened together? How does a young bee look?

5. Write the story of the oldest of the bee family which lived in this tunnel. Why did it hatch first? On what did it feed? When it became a full fledged bee, what did it do? How did it finally get out?

6. Take a glass tube, the hollow at the center being about one-eighth of an inch across, a tube which you can get in any drug-store. Break this tube into sections, six or seven inches long, wrap around each a black paper or cloth, made fast with rubber bands and suspend them in a hedge or among thick bushes in May. Examine these tubes each week to see if the wasps or bees are using them.

Supplementary reading—"The Story We Love Best," in Ways of the Six-footed, Comstock.
THE BUMBLEBEE
Teacher's Story

Thou, in sunny solitudes,
Rover of the underwoods,
The green silence dost replace
With thy mellow, breezy bass.

—EMERSON.

HERE seems to have been an hereditary war between
the farm boy and the bumblebee, the hostilities
usually initiated by the boy. Like many wars, it
is very foolish and wicked, and has resulted in great
harm to both parties. Luckily, the boys of to-day are
more enlightened; and it is to be hoped that they
will learn to endure a bee sting or two for the sake of
protecting these diminishing hosts, upon which so
many flowers depend for carrying their pollen; for
of all the insects of the field, the bumblebees are the best and most
needed friends of the flowers.

The bumblebees are not so thrifty and forehanded as are the honey-
bees, and do not provide enough honey to sustain the whole colony during
the winter. Only the mother bees, or queens as they are called, survive
the cold season. Just how they do it, we do not know, but probably they
are better nourished and therefore have more endurance than the workers.
In early May, one of the most delightful of spring visitants is one of these
great buzzing queens, flying low over the freshening meadows, trying to
find a suitable place for her nest; and the farmer or fruit grower who
knows his business, is as anxious as she that she find suitable quarters,
knowing well that she and her children will render him most efficient aid
in growing his fruit and seed. She finally selects some cozy place, very
likely a deserted nest of the field mouse, and there begins to build her
home. She toils early and late, gathering pollen and nectar from the
blossoms of the orchard and other flowers which she makes into a special
kind of bee-bread, by mixing it with nectar. This is packed in an irregu-
lar mass and on it she lays a few eggs; each little bee grub, as soon as it
hatches, burrows into the bee-bread, making a little cave for itself while
satisfying its appetite. After it is fully grown, it spins about itself a
cocoon and changes to a pupa, and later emerges a full-fledged worker
bumblebee, being scarcely more than half as large as her queen mother.
These workers or daughters of the family find full satisfaction in life in
attending to the wants of the growing family. They gather more pollen
and mix it with honey, making larger masses for the young to burrow in;
meanwhile, the queen remains at home and devotes her energies to laying
eggs for the enlargement of the colony. The workers not only care for
the young, but later they strengthen the silken pupa cradles with wax,
and thus make them into cells for storing honey. When we understand
that the cells in the bumblebee's nest are simply made by the young bees
burrowing in any direction, we can understand why the bumblebee comb
is so disorderly in the arrangement of its cells. Perhaps the boy of the
farm would find the rank bumblebee honey less like the ambrosia of the
gods, if he knew that it was stored in the deserted cradles and swaddling
clothes of the bumblebee grubs.
A bumblebee's nest after a frost. Note the mummy of the first owner of the nest.

Photo by Slingerland.

All of the eggs in the bumblebee nest in the spring and early summer develop into workers which do incidentally the vast labor of carrying pollen for thousands of flowers; to these only is granted the privilege of carrying the pollen for the red clover, since the tongues of the other bees are not sufficiently long to reach the nectar. The red clover does not produce seed in sufficient quantity to be a profitable crop, unless there are bumblebees to pollinate its blossoms. Late in the summer, queens and drones are developed in the bumblebee nest, the drones, as with the honey-bees, being mates for the queens. But of all the numerous population of the bumblebee nest, only the queens survive the rigors of winter, and on them and their success depends the future of the bumblebee species.

There are many species of bumblebees, some much smaller than others, but they all have the thorax covered with plush above and the abdomen hairy, and their fur is usually marked in various patterns of pale yellow and black. The bumblebee of whatever species, has short but very active antennæ and a mouth fitted for biting as well as for sucking. Between the large compound eyes are three simple eyes. The wings are four in number and strong; the front legs are very short; all the legs have hairs over them and end in a three-jointed foot, tipped by a claw. On the hind leg, the femur and the first tarsal joint are enlarged, making the pollen baskets on which the pollen is heaped in golden masses. One of the most interesting observations possible to make, is to note how the bumblebee brushes the pollen from her fur and packs it into her pollen baskets.
LESSON CII
THE BUMBLEBEE

Leading thought—The bumblebees are the chief pollen carriers for most of our wild flowers as well as for the clovers and other farm plants. They should, therefore, be kindly treated everywhere; and we should be careful not to hurt the big queen bumblebee which we see often in May.

Method—Ask the questions and encourage the pupils to answer them as they have opportunity to observe the bumblebees working in the flowers. A bumblebee may be imprisoned in a tumbler for a short period for observation, and then allowed to go unharmed. It is not advisable to study the nest, which is not only a dangerous proceeding for the pupil, but it also means the destruction of a colony of these very useful insects. However, if the location of a nest is discovered, it may be dug up and studied after the first heavy frost. Special stress should be laid upon the observations of the actions of the bees when visiting flowers.

Observations—1. In how many flowers do you find the bumblebee? Watch her closely and see how she gets the nectar. Notice how she “bumbles around” in a flower and becomes dusted with pollen. Watch her and note how she gets the pollen off her fur and packs it in her pollen baskets. On which legs are her pollen baskets? How does the pollen look when packed in them? What does she do with pollen and nectar?

2. Catch a bumblebee in a jelly glass and look at her closely. Can you see three little eyes between the big compound eyes? Describe her antennae. Are they active? How many pairs of wings has she? Do you think they are strong? Which pair of legs is the shortest? How many segments are there in the leg? Do you see the claws on the foot?

3. What is the bumblebee’s covering? What is the color of her plush? Is she furry above and below?

4. Can you see that she can bite as well as suck with her mouth-parts? Will a bumblebee sting a person unless she is first attacked?

5. Have you seen the very large queen bumblebee in the spring, flying near the ground hunting for a place to build a nest? Why must you be very careful not to hurt her? How does she pass the winter? What does she do first, in starting the nest?

6. In how many ways does the bumblebee benefit us?
THE HONEY-BEE

Teacher’s Story

URING many years naturalists have been studying the habits and adaptations of the honeybees, and, as yet, the story of their wonderful ways is not half told. Although we know fairly well what the bees do, yet we have no inkling of the processes which lead to a perfect government and management of the bee community; and even the beginner may discover things never known before about these fascinating little workers. In beginning this work it might be well to ask the pupils if they have ever heard of a republic that has many kings and only one queen; and where the citizens do all the governing without voting, and where the kings are powerless and the queen works as hard and longer than any of her subjects; and then tell them that the pages of history contain no account of a republic so wonderful as this; yet the nearest beehive is the home of just this sort of government.

In addition to the interest of the bee colony from a nature-study standpoint, it is well to get the children interested in bee-keeping as a commercial enterprise. A small apiary well managed may bring in an acceptable income; and it should be the source of a regular revenue to the boys and girls of the farm, for one hive should net the young bee-keeper from three to five dollars per year and prove a business education to him in the meantime.

Bees are perfect socialists. They have non-competitive labor, united capital, communal habitations and unity of interests. The bee commune is composed of castes as immutable as those of the Brahmins, but these castes exist for the benefit of the whole society instead of for the individuals belonging to them. These castes we have named queens, drones and workers, and perhaps, first of all, we should study the physical adaptations of the members of these castes for their special work in the community.

The Worker (p. 446, Fig. 3.)

There are three divisions to the body of the bee, as in all insects—head, thorax and abdomen. The head bears the eyes, antennæ and mouth-parts, (p. 448, W.) There are two large compound eyes on either side of the head and three simple eyes between them. The antennæ arise from the face, each consisting of two parts, one straight segment at the base, and the end portion which is curved and made up of many segments. There is also a short, bead-like segment where the antenna joins the face. A lens is needed to see the jaws of the bee, folded across, much like a pair of hooks, and below them the tongue, which is a sucking tube; the length of the tongue is very important, for upon this depends the ability of the bee to get nectar from the flowers.

The thorax bears three pairs of legs below and two pairs of wings above. Each leg consists of six segments, and the foot or tarsus has four segments and a pair of claws. The front leg has an antennæ comb between the tibia and tarsus, (p. 447, F, a.) the hind leg has a pollen basket, which is a long cavity bordered by hairs wherein the pollen is packed and carried (p. 447, A, pb.) On the other side of the large joint beyond the pollen
basket are rows of spines which are used to remove the pollen from the baskets (p. 447, B, pc,) and between these two large segments are the pincers for removing the wax (p. 447, B, wp.)

The front pair of wings is larger than the hind pair. The wings of the old bees that have done much work are always frayed at the edges.

There are six segments or rings to the abdomen, plainly visible from above. If the five segments next the thorax are marked above with yellow bands on their front edges, the bee is an Italian. On the lower side of the abdomen, each segment is made up of a central plate with an overlapping plate on each side; just at the front edge on each side of the central plate is a wax pocket which cannot be seen unless the bee is dissected under a microscope. From these pockets are secreted little flecks of wax (p. 448, X.)

The Queen

The queen bee is a truly royal insect. She is much larger than the worker, her body being long, pointed, and extending far beyond the tips of
Insect Study

her closed wings, giving her a graceful form. She has no pollen baskets or pollen comb upon her legs, because it is not a part of her work to gather pollen or honey. The queen bee starts life as an ordinary worker egg, which is selected for special development. The workers tear down the partitions of the cells around the chosen egg and build a projection over the top, making an apartment, (p. 446, Fig. 4.) The little white bee grub, as soon as it hatches, is fed for five days on the same food as is given to the worker grubs for three days; it is a special substance, secreted by the worker bees, called royal jelly. This food is very nourishing, and after being reared upon it, the princess larva weaves around herself a silken cocoon and changes to a pupa. Meanwhile the workers have sealed her cell with wax.
When the princess-pupa changes to the full-grown queen she cuts a circular door in the cover of the cell and pushes through it into the world. Her first real work is to hunt for other queen cells and if she finds one, she will, if not hindered, make a hole in its side and sting to death the poor princess within. If she finds another full-grown queen, the two fight until one succumbs. The queen never uses her sting upon anything or anyone except a rival queen.

After a few days she takes her marriage flight in the air, where she mates with some drone, and then returns to her hive and begins her great work as mother of the colony. She runs about on the comb, pokes her head into a cell to see if it is ready, then turning about thrusts her abdomen in and neatly glues an egg fast to the bottom.

When the honey season is at its height she works with great rapidity, sometimes laying at the rate of six eggs per minute, often producing 3,000 eggs during a day, which would equal twice her own weight. If the workers do not allow her to destroy the other queens, she then takes a portion of her colony with her and swarms out, seeking a home elsewhere.

\[D, \text{head of drone}; \quad Q, \text{head of queen bee}; \quad W, \text{head of worker}; \quad X, \text{worker bee seen from below, showing plates of wax secreted from wax pockets.}\]

From How to Keep Bees—Comstock.

Drawn by A. J. Hammar.
The Drone

The drone differs much in shape from the queen and the worker. He is broad and blunt, being very different in shape from the queen, and larger than the worker, (p. 446, Fig. 2.) He has no pollen baskets on his legs and has no sting. His eyes are very much larger than those of the queen or the worker and unite at the top of the head (p. 448, D.) His wings are larger and stronger than those of the worker or queen. It is not his business to go out and gather honey or to help in the work of the hive. His tongue is not long enough to get honey from the flowers; he has no pollen basket in which to carry pollen; he has no sting to fight enemies and no pockets for secreting wax; he is fed by his sister workers until the latter part of the season when the honey supply runs low, and then he is stung or bitten to death by these same sisters who have always given him such good care. The drone should be called a prince or king, since his particular office in the hive is to mate with the queen.

References—How to Keep Bees, Comstock; The Bee People, Morley.

LESSON CIII

The Honey-bee

Leading thought—In a colony of honey-bees there are three different forms of bees, the queens, the drones, and the workers. All of these have their own special work to do for the community.

Method—In almost every country or village community there is an apiary, or at least someone who keeps a few colonies of bees; to such the teacher must turn for material for this lesson. If this is not practical the teacher may purchase specimens from any bee dealer; she may, for instance, get an untested queen with attendant workers in a queen cage sent by mail for a small sum. These could be kept alive for some time by feeding them with honey, during which time the pupils can study the forms of the two castes. Any apiary during September will give enough dead drones for a class to observe. Although ordinarily we do not advocate the study of dead specimens, yet common sense surely has its place in nature-study; and in the case of the honey-bee, a closer study of the form of the insect is desirable than the living bee might see fit to permit. There are no more wonderful instances of adaptation of form to life than is found in the anatomy of the workers, queens and drones; moreover, it is highly desirable if the pupils are ever to become bee-keepers, that they shall know these adaptations.

A lens is almost necessary for these lessons and a compound microscope used with a low power would be a very desirable adjunct. This lesson should not be given below the fifth grade; and it is better adapted to eighth grade work.

The Worker

Observations—1. How many divisions of the body are there?
2. What organs are borne on the head?
3. Are there small, simple eyes between the large compound ones?
4. What is the difference between the large eyes and the small?
5. Describe the antennae.
6. What can you see of the mouth? Describe it.
7. Look at the tongue under the microscope and see how it is fitted for getting nectar from flowers.
8. What organs are borne on the thorax?
9. Study the front or middle leg. How many joints has it?
10. With a lens find the antennae cleaner on the front leg. Describe it.
11. Describe the feet and claws.
12. Compare the third segment of the hind leg with that of the front leg.
13. Note that this segment of the hind leg is much wider. Note its form and describe how it forms the pollen basket.
14. Study the next segment of the hind leg, and note the wax pincers and the pollen combs.
15. Compare the front and hind wing as to shape and size.
16. How many rings are there on the abdomen and how are the rings colored above.
17. Study the lower side of the body; do you know where the wax comes from?
18. Write an English theme on the development of the larva of the worker bee; the duties of a worker bee from the time it issues from its cocoon until it dies working for the colony.

The Queen Bee

1. How does the queen differ in size and shape from the worker?
2. Has she pollen baskets or pollen combs on her hind legs?
3. How does the shape of the abdomen differ from that of the worker?
4. Write an English theme on the life of a queen bee. This should cover the following points: The kind of cell in which the queen is developed; the kind of food on which she is reared; the fact that she never stings people but reserves her sting for other queens; why she does not go out to gather honey; how and by whom and on what she is fed; she would not use pollen baskets if she had them; the work she does for the colony; the length of her life compared with that of a worker; the time of year when new queens are developed, and what becomes of the old queen when a new one takes her place; why she is called a queen.

The Drone

1. How does the drone differ in size and form of body from the worker?
2. How does he differ in these respects from the queen?
3. Has he pollen baskets on his legs?
4. Has he a sting?
5. Compare his eyes with those of the queen and worker.
6. Compare the size of his wings with those of the queen and worker.
7. Write an English theme on the drone. This should cover the following points: what sort of cell is the drone developed; does he go out to gather honey or help in the work of the hive; how he is fed; how he is unfitted for work for the colony in the following particulars: Tongue, lack of pollen baskets, lack of sting, and of wax pockets; why the drone should be called a prince or king; the death of the drones; when and by what means it occurs.
Honey-comb

Teacher's Story

The structure of honey-comb has been for ages admired by mathematicians, who have measured the angles of the cells and demonstrated the accurate manner in which the rhomb-shaped cell changes at its base to a three faced pyramid; and proven that, considering the material of construction, honey-comb exemplifies the strongest and most economic structure possible for the storing of liquid contents. While recent instruments of greater precision in measuring angles, show less perfection in honey-comb than the ancients believed, yet the fact still stands that the general plan of it is mathematically excellent.

Some have tried to detract from bee skill, by stating that the six-sided cell is simply the result of crowding cells together. Perhaps this was the remote origin of the hexagonal cell; but if we watch a bee build her comb, we find that she begins with a base laid out in triangular pyramids, on either side of which she builds out six-sided cells. A cell just begun, is as distinctly six-sided as when completed.

The shape of the cell of a honey-comb is six-sided in cross section. The bottom is a three-sided pyramid and its sides help form pyramids at the bottom of the cells opposite, thus economizing every particle of space. In the hive, the cells lie horizontal usually, although sometimes the combs are twisted. The honey is retained in the cell by a cap of wax which is made in a very cunning fashion; it consists of a circular disc at the middle supported from the six angles of the cell by six tiny girders. The comb is made fast to the section of the hive by being plastered upon it. The foundation comb sold to apiarists is quite thick, so that the edges of the cell may be drawn out and almost complete the sides of the cell. However, the foundation comb is expensive and is ordinarily used by the bee-keeper simply as a starter, which means a little strip a few inches or so in width fastened to the top of a section just to give the bees a hint that this is the direction in which the comb should be built, a hint which the bees invariably take.
The cells of honey-comb are used also for the storing of bee-bread and also as cradles for the young bees.

References—The Bee People, Morley; How to Keep Bees, Comstock.

![Starter of foundation comb in section boxes, partially built out by the bees. The section at the left has a “starter” of foundation comb. The other sections show the work of the bees in drawing out and building on the “starters.”](image)

LESSON CIV

The Honey-comb

Leading thought—The cells of honey-comb are six-sided and in double rows and are very perfectly arranged for the storing of honey, so as to save room.

Materials—A section filled with honey and also a bit of empty comb and a bit of commercial foundation comb which may be obtained in any apiary.

Observations—1. Look at a bit of empty honey-comb; what is the shape of the cell as you look down into it?
 2. What is the shape of the bottom of the cell?
 3. How does the bottom of the cell join the bottom of the cell opposite? Explain how honey-comb economizes space as storage for honey, and why an economy of space is of use to bees in the wild state.
 4. In the hive is the honey-comb placed so that the length of the cells are horizontal or up and down?
 5. Observe honey-comb containing honey; how is the honey retained in the cells?
 6. Carefully take off a cap from the honey cell and see if you can find the six girders that extend inward from the angles of the cell to support the circular portion in the center.
 7. By what means is the honey-comb made fast to the sides of the section or the hive?
 8. Study a bit of foundation comb and note where the bees will pull out the wax to form the cell.
 9. Why and how is foundation comb used by the bee-keeper?
 10. For what purpose besides storing honey are the cells of honey-comb used by the bees?
EE-hives are the houses which man furnishes for the bee colonies, the wild bees ordinarily living in hollow trees or in caves. The usual hive consists of a box which is the lower story and of one or more upper stories, called “supers.” In the lower story are placed frames for the brood and for storing the honey for the winter use of the bees. In the supers are placed the sections, each of which is planned to hold a pound of honey. It is the habit of the bees to place their brood in the lower part of their nests and store honey in the upper portions.

The bee-keepers have taken advantage of this habit of the bees and remove the supers with their filled sections and replace them with others to be filled, and thus get a large crop of honey. The number of bees in a colony varies; there should be at least 40,000 in a healthy colony. Of these a large proportion are workers; there may be a few hundred drones the latter part of the season but only one queen.

Honey-comb is built of wax and is hung from the frame so that the cells are horizontal; its purpose is to cradle the young and for the storage of pollen and honey. The wax used for building the comb is a secretion of the bees; when comb is needed, a number of self-elected bee citizens gorge themselves with honey and hang themselves up in a curtain, each bee reaching up with her fore feet and taking hold of the hind feet of the one above her. After remaining thus for some time the wax appears in little plates, one on each side of the second, third, fourth and fifth segments of the abdomen. This wax is chewed by the bees and made into comb.

Honey is made from the nectar of flowers which the bee takes into her honey stomach. This, by the way, is not the true stomach of the bee and has nothing to do with digestion. It is simply a receptacle for storing the nectar, which is mixed with some secretion from the glands of the bee which brings about chemical changes, the chief of which is changing the
cane sugar of the nectar into the more easily digested grape sugar of the honey. After the honey is emptied from the honey stomach into the cell, it remains exposed to the air for some time before the cell is capped, and thus ripens. It is an interesting fact that up to the seventeenth century honey was the only means people had for sweetening their food, as sugar was unknown.

Bee-bread is made from the pollen of flowers which is perhaps mixed with saliva so as to hold together; it is carried from the field on the pollen baskets of the hind legs of the workers; it is packed into the cell by the bees and is used for food. Propolis is bee glue; it is used as a cement and varnish; it is gathered by the bees from the leaf-buds of certain trees and plants, although when they can get it, the bees will take fresh varnish. It is used as a filler to make smooth the rough places of the hive; it often helps hold the combs in place; it calks every crack; it is applied as a varnish to the cells of the honey-comb if they remain unused for a time, and if the door of the observation hive be left open the bees will cover the inside of the glass with this glue, and thus make the interior of the hive dark.

The young bees are footless, white grubs. Each one lives in its own little cell and is fed by the nurse bees, which give it partly digested food from their own stomachs.

The removal of honey from the supers does not do any harm to the bee colony if there is enough honey left in the brood chambers to support the bees during the winter. There should be twenty-five or thirty pounds of honey left in the brood chamber for winter use. In winter, the hives should be protected from the cold by being placed in special houses or by being encased in larger boxes, leaving an opening so that the bees may come out in good weather. The chaff hive is best for both winter and summer, as it surrounds the hive with a space, which is filled with chaff, and keeps the hive warm in winter and cool in summer. Many beekeepers put their bees in cellars during the winter, but this method is not as safe as the chaff hive. Care should be taken in summer to place the hives so that they are shaded at least part of the day. The grass should be mown around the hives so that the bees will not become entangled in it as they return from the fields laden with honey.

What may be seen in the observation hive—First of all, it is very interesting to watch the bees build their comb. When more comb is needed certain members of the colony gorge themselves with honey and remain suspended while it oozes out of the wax pockets on the lower side of the abdomen. This wax is collected and chewed to make it less brittle and then is carried to the place where the comb is being built and is molded into shape by the jaws of the workers. However, the bee that puts the wax in place is not always the one that molds it into comb.

A bee comes into the hive with her honey stomach filled with nectar and disgorges this into a cell. When a bee comes in loaded with pollen, she first brushes it from the pollen baskets on her hind legs into the cell; later another worker comes along and packs the pollen grains into the cell with her head, which is a comical sight.

The bee nurses run about on the comb feeding the young bee grubs partially digested honey and pollen regurgitated from their own stomachs. Whenever the queen moves about the comb she is followed by a retinue of devoted attendants which feed her on the rich and perfectly digested royal
always lay an egg to produce a drone or male in the larger cells.

If there is any foreign substance in the observation hive it is interesting to see the bees go to work at once to remove it. They dump all of the debris out in front of the hive. They close all crevices in the hive; and they will always curtain the glass, if the door is kept open too much, with propolis or bee glue, which is a very sticky substance which they get from leaf buds and other vegetable sources. When bees fan to set up a current of air in the hive, they glide back and forth, moving the wings so rapidly that we can only see a blur about their bodies.

If drones are developed in the hive, it is interesting to see how tenderly they are fed by their sister workers, although they do not hesitate to help themselves to the honey stored in the cells; and if the observation hive is working during September, undoubtedly the pupils may be able to see the murder of the drones by their sisters. But the children should understand that this killing of the drones is necessary for the preservation of the colony, as the workers cannot store enough honey to keep the colony alive during the winter if the drones were allowed to go on feeding.

If you see the worker bees fighting, it means that robbers are attempting to get at the stores of the observation hive. The entrance to the hive should at once be contracted by placing a block of wood in front, so that there is room for only one bee at a time to pass in and out.

LESSON CV

THE INDUSTRIES OF THE HIVE

Leading thought—In the hive are carried on the industries of wax-making, building of honey-comb, storing of honey and bee-bread, caring for the young, keeping the hive clean and ventilated and0calking all crevices with bee glue.

Method—This lesson should be in the nature of a demonstration. If there is an apiary in the neighborhood, it is quite possible that the teacher may show the pupils a hive ready for occupancy by the bees; in any case she will have no difficulty in borrowing a frame of brood comb, and this with a section of honey which can be bought at the grocery store, is sufficient if there is no observation hive. This lesson should be an informal talk between teacher and pupils.
An observation hive in the schoolroom is an object of greatest interest to the pupils, as through its glass sides they may be able to verify for themselves the wonderful tales concerning the lives and doings of the bees which have been told us by naturalists. Moreover, the study thus made of the habits of the bees is an excellent preparation for the practical apiarist, and we sincerely believe that bee-keeping is one of the ways by which the boys and girls of the farm may obtain money for their own use.

The observation hive is very simply constructed and can be made by anyone who knows how to use ordinary carpenter tools. It is simply a small, ordinary hive with a pane of glass on each side which is covered by a hinged door. A hive thus made is placed so that the front end rests upon a window sill; the sash is lifted an inch or so, a strip of wood, or a piece of wire netting being inserted underneath the sash except in front of the entrance of the hive, to hinder the bees from coming back into the room. A covered passageway should extend from the entrance of the hive to the outside of the window sill. This window should be one which opens away from the playground so that the bees coming and going, will not come into collision with the pupils. The observation window should be kept carefully shut, except when the pupils are using it, since the bees object to light in their homes.

The A. I. Root Co., of Medina, Ohio, sell a pretty observation hive which we have used successfully by stocking it afresh each season, it being too small for a self-sustaining colony. But it has the advantage of smallness which enables us to see all that is going on within it, which would be impossible in a larger hive. This hive comes in several sizes, and will be shipped from the makers stocked with bees at prices ranging from $1.25 to $4.00.

Observations—Industries and care of the hive—1. What is the hive, and what do wild bees use instead of the hive? Describe as follows:
2. Describe a brood chamber and a super and the uses of each.
3. How many and what bees live in a hive.
4. How the honey-comb is made and placed and the purpose of it.
5. How the wax is produced and built into the comb.
6. How honey is made.
7. What bee-bread is and its uses.
8. What propolis is and what it is used for.
9. How young bees look and how they are cradled and fed.
10. Does the removal of the honey from the supers in the fall do any harm to the bee colony?
11. How much honey should a good-sized colony have in the fall to winter well?
12. How should the hives be protected in the winter and summer?
13. Describe how a bee works when building honey-comb.
14. How does the bee act when storing honey in a cell?
15. How does a bee place pollen in a cell and pack it into bee-bread?
16. Describe how the nurse bees feed the young, and how the young look when eating.
17. Describe how the "ladies in waiting" feed and care for the queen.
18. Try to observe the queen when she is laying eggs and describe her actions.
19. How do the bee workers keep their house clean?
20. How do they stop all crevices in the hive? If you keep the hive uncovered too long, how will they curtain the window?
21. Describe the actions of the bees when they are ventilating the hive.
22. If there are any drones in the hive, describe how they are fed.
23. How can you tell queens, drones and workers apart?
VII. OTHER INVERTEBRATE-ANIMAL STUDY

THE GARDEN SNAIL

Teacher's Story

PERCHANCE if those who speak so glibly of a "snail's pace" should study it, they would not sneer at it, for carefully observed, it seems the most wonderful method of locomotion ever devised by animal. Naturally enough, the snail cannot gallop since it has but one foot; but it is safe to assert that this foot, which is the entire lower side of the body, is a remarkable organ of locomotion. Let a snail crawl up the side of a tumbler and note how this foot stretches out and holds on. It has flanges along the sides, which secrete an adhesive substance that enables the snail to cling, and yet it also has the power of letting go at will. The slow, even, pushing forward of the whole body, weighted by the unbalanced shell, is as mysterious and seemingly as inevitable, as the march of fate, so little is the motion connected with any apparent muscular effort. But when his snailship wishes to let go and retire from the world, this foot performs a feat which is certainly worthy of a juggler; it folds itself lengthwise, and the end on which the head is retires first into the shell, the tail end of the foot being the last to disappear. And now find your snail!

Never was an animal so capable of stretching out and then folding up all its organs, as is this little tramp who carries his house with him. Turn one on his back when he has withdrawn into his little hermitage, and watch what happens. Soon he concludes he will find out where he is, and why he is bottomside up; as the first evidence of this, the hind end of the foot, which was folded together, pushes forth; then the head and horns come bubbling out. The horns are not horns at all, but each is a stalk bearing an eye on the tip. This is arranged conveniently, like a marble fastened to the tip of a glove finger. When a snail wishes to see, it stretches forth the stalk as if it were made of rubber; but if danger is perceived, the eye is pulled back exactly as if the marble were pulled back through the middle of the glove finger; or as a boy would say, "it goes into the hole and pulls the hole in after it." Just below the stalked eyes, is another pair of shorter horns, which are feelers, and which may be drawn back in the same manner; they are used constantly for testing the nature of the surface on which the snail is crawling. It is an interesting experiment to see how near to the eyes and the feelers we can place an object, before driving them back in. With these two pairs of sense organs pushed out in front of him, the snail is well equipped to observe the topography of his immediate vicinity; if he wishes to explore above, he can stand on the tip of his tail and reach far up; and if there is anything to take hold of, he can glue his toe fast to it and pull himself up. Moreover, I am convinced that snails have decided views about where they wish to go, for I have tried by the hour to keep them marching lengthwise on the piazza railing, so as to study them; and every snail was determined to go crosswise and crawl under the edge, where it was nice and dark.
It is interesting to observe through a lens, the way a snail takes his dinner; place before him a piece of sweet apple or other soft fruit, and he will lift himself on his front toe and begin to work his way into the fruit. He has an efficient set of upper teeth, which look like a saw and are colored as if he chewed tobacco; with these teeth and with his round tongue, which we can see popping out, he soon makes an appreciable hole in the pulp; but his table manners are not nice, since he is a hopeless slobberer.

There are right and left spiraled snails. All those observed for this lesson show the spiral wound about the center from left over to right, or in the direction of the movement of the hands of a clock, and this is usually the case. With the spiral like this, the breathing pore is on the right side of the snail and may be seen as an opening where the snail joins the shell. This pore may be seen to open and contract slowly; by this motion, the air is sucked into the shell where it bathes the snail's lung, and is then forced out—a process very similar to our own breathing.

The snail has good judgment when attacked; at the first scare, he simply draws in his eyes and feelers and withdraws his head, so that nothing can be seen of him from above, except a hard shell which would not attract the passing bird. But if the attack continues, he lets go all hold on the world, and nothing can be seen of him but a little mass which blocks the door to his house; and if he is obliged to experience a drought, he makes a pane of glass out of mucus across his door, and thus stops evaporation. This is a very wise precaution, because the snail is made up largely of moisture and much water is needed to keep his mucilage factory running.
The way the snail uses his eyes is comical; he goes to the edge of a leaf and pokes one eye over to see what the new territory is like; but if his eye strikes an object, he pulls that one back, and prospects for a time with the other. He can lengthen the eye-stalk amazingly if he has need. How convenient for us if we could thus see around a corner. If a small boy were as well off as a snail, he could see the entire ball game through a knot-hole in the fence. In fact, the more we study the snail, the more we admire, first his powers of ascertaining what there is in the world, and then his power of getting around in the world by climbing recklessly and relentlessly over obstacles, not caring whether he is right side up on the floor or hanging wrong side up from the ceiling; and, finally, we admire his utter reticence when things do not go to suit him. I think the reason I always call a snail “he” is because he seems such a philosopher—a Diogenes in his tub. However, since the snail combines both sexes in one individual the pronoun is surely applicable.

When observed through a lens, the snail’s skin looks like that of the alligator, rough and divided into plates, with a surface like pebbled leather; and no insect intruder can crawl up his foot and get into the shell “unbeknownst,” for the shell is grown fast to the flange, that grows out of the middle of the snail’s back. The smoother the surface the snail is crawling upon, the harder to make him let go. The reason for this lies in the mucus, which he secretes as he goes, and which enables him to fasten himself anywhere; he can crawl up walls or beneath any horizontal surface, shell downward, and he leaves a shining trail behind him wherever he goes.

Snail eggs are as large as small peas, almost transparent, covered with very soft shells, and fastened together by mucus. They are laid under stones and decaying leaves. As soon as the baby snail hatches, it has a shell with only one spiral turn in it; as it grows, it adds layer after layer to the shell on the rim about the opening—which is called the lip; these layers we can see as ridges on the shell. If we open an empty shell, we can see the progress of growth in the size of the spirals. Snails eat succulent leaves and other soft vegetable matter. During the winter, they bury themselves beneath objects or retire into soft humus. In preparing for the winter, the snail makes a door of mucus and lime, or sometimes three doors, one behind another, across the entrance to his shell, leaving a tiny hole to admit the air. There are varieties of snails which are eaten as dainties in Europe, and are grown on snail farms for the markets. The species most commonly used is the same as that which was regarded as a table luxury by the ancient Romans.

References—Wild Life, Ingersoll; The Natural History of Some Common Animals, Latter.

LESSON CVI

The Garden Snail

Leading thought—The snail carries his dwelling with him, and retires within it in time of danger. He can climb on any smooth surface.

Method—The pupils should make a snailery, which may consist of any glass jar, with a little soil and some moss or leaves at the bottom, and a shallow dish of water at one side. The moss and soil should be kept moist. Place the snails in this and give them fresh leaves or pulpy fruit, and they will live comfortably in confinement. A bit of cheese-cloth fastened with
a rubber band should be placed over the top of the jar. A tumbler inverted over a dish, on which is a leaf or two, makes a good observation cage to pass around the room for closer examination. An empty shell should be at hand, which may be opened and examined.

Observations—1. Where do you find snails? Why do they like to live in such places?
2. How does a snail walk? Describe its “foot.” How can it move with only one foot? Describe how it climbs the side of the glass jar. How does it cling?
3. What sort of a track does a snail leave behind it? What is the use of this mucus?
4. Where are the snail’s eyes? Why is this arrangement convenient? If we touch one of the eyes what happens? What advantage is this to the snail? Can it pull in one eye and leave the other out?
5. Look below the eyes for a pair of feelers. What happens to these if you touch them?
6. What is the use of its shell to a snail? What does the snail do if startled? If attacked? When a snail is withdrawn into its shell can you see any part of the body? Is the shell attached to the middle of the foot? How did the shell grow on the snail’s back? How many spiral turns are there in the full-grown shell? Are there as many in the shell of a young snail? Can you see the little ridges on the shell? Do you think that these show the way the shell grew?
7. Can you find the opening through which the snail draws its breath? Where is this opening? Describe its action.
8. Put the snail in a dry place for two or three days, and see what happens. Do you think this is for the purpose of keeping in moisture? What does the snail do during the winter?
9. Place a snail on its back and see how it rights itself. Describe the way it eats. Can you see the horny upper jaw? Can you see the rasping tongue? What do snails live on?
10. Do you know how the snail eggs look and where they are laid? How large is the shell of the smallest garden snail you ever saw? How many spiral turns were there in it? Open an empty snail shell and see how the spirals widened as the snail grew. Do you think the shell grew by layers added to the lip?
11. Do all snails have shells? Describe all the kinds of snails you know. What people consider snails a table delicacy?

TO A SNAIL

Little Diogenes bearing your tub, whither away so gay,
With your eyes on stalks, and a foot that walks, tell me this I pray!
Is it an honest snail you seek that makes you go so slow,
And over the edges of all things peek? Have you found him, I want to know;
Or do you go slow because you know, your house is near and tight;
And there is no hurry and surely no worry lest you stay out late at night.
THE EARTHWORM

Teacher's Story

LTHOUGH not generally considered attractive, for two reasons the earthworm has an important place in nature-study: it furnishes an interesting example of lowly organized creatures, and it is of great economic importance to the agriculturist. The lesson should have special reference to the work done by earthworms and to the simplicity of the tools with which the work is done.

The earthworm is, among lower animals, essentially the farmer. Long before man conceived the idea of tilling the soil, this seemingly insignificant creature was busily at work plowing, harrowing, and fertilizing the land. Nor did it overlook the importance of drainage and the addition of amendments—factors of comparatively recent development in the management of the soil by man.

Down into the depths, sometimes as far as seven or eight feet, but usually from twelve to eighteen inches, goes the little plowman, bringing to the surface the subsoil, which is exactly what we do when we plow deeply. To break up the soil as our harrows do, the earthworm grinds it in a gizzard stocked with grains of sand or fine gravel, which act as milestones. Thus it turns out soil of much finer texture than we, by harrowing or raking, can produce. In its stomach it adds the lime amendment, so much used by the modern farmer. The earthworm is apparently an adept in the use of fertilizers; it even shows discrimination in keeping the organic matter near the surface, where it may be incorporated into the soil of the root zone. It drags into its burrows dead leaves, flowers and grasses, with which to line the upper part. Bones of dead animals, shells, and twigs are buried by it, and, being more or less decayed, furnish food for plants. These minute agriculturists have never studied any system of drainage, but they bore holes to some depth which carry off the surplus water. They plant seeds by covering those that lie on the ground with soil from below the surface—good, enriched, well granulated soil it is, too. They further care for the growing plants by cultivating, that is keeping fine and granular, the soil about the roots.

It was estimated by Darwin that, in garden soil in England, there are more than 50,000 earthworms in an acre, and that the whole superficial layer of vegetable mold passes through their bodies in the course of every few years, at the rate of eighteen tons per acre yearly.

This agricultural work of the earthworm has been going on for ages. Wild land owes much of its beauty to this diminutive creature which keeps the soil in good condition. The earthworm has undermined and buried rocks, changing greatly the aspect of the landscape. It has preserved ruins and ancient works of art. Several Roman villas in England owe their preservation to the earthworm. All this work is accomplished with the most primitive tools, a tiny proboscis, a distensible pharynx, a rather indeterminate tail, a gizzard and the calcareous glands peculiar to this lowly creature.
An earthworm has a peculiar, crawling movement. Unlike the snake, which also moves without legs, it has no scales to function in part as legs; but it has a very special provision for locomotion. On the underside of a worm are found numerous setae—tiny, bristlelike projections. These will be seen to be in double rows on each segment, excepting the first three and the last. The setae turn so that they point in the opposite direction from which the worm is moving. It is this use of these clinging bristles, together with strong muscles, which enables a worm to hold tightly to its burrow when bird or man attempts its removal. A piece of round elastic furnishes an excellent example of contraction and extension, such as the earthworm exhibits. Under the skin of the worm are two sets of muscles; the outer passing in circular direction around the body, the inner running lengthwise. The movement of these may be easily seen in a good-sized, living specimen. The body is lengthened by the contraction of circular and the extension of longitudinal muscles, and shortened by the opposite movement.

The number of segments may vary with the age of the worm. In the immature, the clitellum, a thick, whitish ring near the end, is absent. The laying of the earthworm’s egg is an interesting performance. A sac-like ring is formed about the body in the region of the clitellum. This girdle is gradually worked forward and, as it is cast over the head, the sacs ends snap together enclosing the eggs. These capsules, yellowish-brown, football-shaped, about the size of a grain of wheat, may be found in May or June about manure piles or under stones.

Earthworms are completely deaf, although sensitive to vibration. They have no eyes, but can distinguish between light and darkness. The power of smell is feeble. The sense of taste is well developed; the sense of touch is very acute; and we are not so sure as is Dr. Jordan, that the angleworm is at ease on the hook.

Any garden furnishes good examples of the home of the earthworm. The burrows are made straight down at first, then wind about irregularly. Usually they are about one or two feet deep, but may reach even eight feet. The burrow terminates generally in an enlargement where one or several worms pass the winter. Toward the surface, the burrow is lined with a thin layer of fine, dark colored earth, voided by the worm. This creature is an excavator and builder of no mean ability. The towerlike “castings” so characteristic of the earthworm, are formed with excreted earth. Using the tail as a trowel, it places earth, now on one side and now on the other. In this work, of course, the tail protrudes; in the search for food, the head is out. A worm, then, must make its home, narrow as it is, with a view to being able to turn in it.

An earthworm will bury itself in loose earth in two or three minutes, and in compact soil, in fifteen minutes. Pupils should be able to make these observations easily either in the terrarium or in the garden.

In plugging the mouths of their burrows, earthworms show something that seems like intelligence. Triangular leaves are invariably drawn in by the apex, pine-needles by the common base, the manner varying with the shape of the leaf. They do not drag in a leaf by the footstalk, unless its basal part is as narrow as the apex. The mouth of the burrow may be lined with leaves for several inches.

The burrows are not found in dry ground nor in loose sand. The earthworm lives in the finer, moderately wet soils. It must have moisture
since it breathes through the skin, and it has sufficient knowledge of soil texture and plasticity to recognize the futility of attempts at burrow building with unmanageable, large grains of sand.

These creatures are nocturnal, rarely appearing by day unless "drowned out" of the burrows. During the day they lie near the surface extended at full length, the head uppermost. Here they are discovered by keen-eyed birds and sacrificed by thousands, notwithstanding the strong muscular protest of which they are capable.

Seemingly conscious of its inability to find the way back to its home, an earthworm anchors tight by its tail while stretching its elastic length in a foraging expedition. It is an omnivorous creature, including in its diet earth, leaves, flowers, raw meat, fat, and even showing cannibalistic designs on fellow earthworms. In the schoolroom, earthworms may be fed on pieces of lettuce or cabbage leaves. A feeding worm will show the proboscis, an extension of the upper lip used to push food into the mouth. The earthworm has no hard jaws or teeth, yet it eats through the hardest soil. Inside the mouth opening is a very muscular pharynx, which can be extended or withdrawn. Applied to the surface of any small object it acts as a suction pump, drawing food into the food tube. The earth taken in furnishes some organic matter for food; calcareous matter is added to the remainder before being voided. This process is unique among animals. The calcareous matter is supposed to be derived from leaves which the worms eat. Generally the earth is swallowed at some distance below the surface, and finally ejected in characteristic "castings."

Thus, the soil is slowly worked over and kept in good condition by earthworms, of which Darwin says: "It may be doubted whether there are many other animals which have played so important a part in the history of the world as have these lowly organized creatures."

References—The Earthworm, Darwin; The Natural History of Some Common Animals, Latter.

"Fly fishing is an art, a fine art beyond a doubt, but it is an art and, like all art, it is artificial. Fishing with an angleworm is natural. It fits into the need of the occasion. It fits in with the spirit of the boy. It is not by chance that the angleworm, earthworm, fishworm, is found in every damp bank, in every handy bit of sod, the green earth over, where there are races whose boys are real boys with energy enough to catch a fish. It is not by chance that the angleworm makes a perfect fit on a hook, with no anatomy with which to feel pains, and no arms or legs to be broken off or to be waved helplessly in the air. Its skin is tough enough so as not to tear, not so tough as to receive unseemly bruises, when the boy is placing it on the hook. The angleworm is perfectly at home on the hook. It is not quite comfortable anywhere else. It crawls about on sidewalks after rain, bleached and emaciated. It is never quite at ease even in the ground, but on the hook it rests peacefully, with the apparent feeling that its natural mission is performed."
—"Boys' Fish and Boys' Fishing," by David Starr Jordan.

LESSON CVII
THE EARTHWORM

Leading thought—The earthworm is a creature of the soil and is of much economic importance.

Method—Any garden furnishes abundant material for the study of earthworms. They are nocturnal workers and may be observed by lan-
tern light. To form some estimate of the work done in a single night, remove the "casts" from a square yard of earth one day, and examine that piece of earth the next. It is well to have a terrarium in the school-room for frequent observation. Scatter grass or dead leaves on top of the soil, and note what happens. For the study of the individual worm and its movements, each pupil should have a worm with some earth upon his desk.

Observations—1. How does the earthworm crawl? How does it turn over? Has it legs? Compare its movement with that of a snake, another legless animal. What special provision for locomotion has the earthworm?

2. Compare the lengths of the contracted and extended body. How accounted for?

3. Describe the body—its shape and color, above and below. Examine the segments. Do all the worms have the same number? Compare the head end with the tail end of the body. Has every worm a "saddle," or clitellum?

4. Does the earthworm hear easily? Has it eyes? Is it sensible to smell or to touch? What sense is most strongly developed?

5. Describe the home of the earthworm. Is it occupied by more than one worm? How long does it take a worm to make a burrow? How does it protect its home? How does it make a burrow? In what kind of soil do you find earthworms at work?

6. Is the earthworm seen most often at night or by day? Where is it the rest of the time? How does it hold to its burrow? When is the tail end at the top? When the head end?

7. What is the food of the earthworm? How does it get its food?

8. Look for the eggs of the earthworm about manure piles or under stones.

9. What are the enemies of the earthworm? Is it a friend or an enemy to us? Why?

10. The earthworm is a good agriculturist. Why?
THE CRAYFISH

Teacher's Story

HEN I look at a crayfish I envy it, so rich is it in organs with which to do all that it has to do. From the head to the tail, it is crowded with a large assortment of executive appendages. In this day of multiplicity of duties, if we poor human creatures only had the crayfish's capabilities, then might we hope to achieve what lies before us.

The most striking thing in the appearance of the crayfish is the great pair of nippers on each of the front legs. Wonderfully are its "thumb and finger" put together; the "thumb" is jointed so that it can move back and forth freely; and both are armed, along the inside edge, with saw teeth and with a sharp claw at the tip so that they can get a firm grip upon an object. Five segments in these great legs can be easily seen; that joining the body is small, but each successive one is wider and larger, to the great forceps at the end. The two stout segments behind the nippers give strength, and also a suppleness that enables the claws to be bent in any direction.

The legs of the pair behind the big nippers have five segments readily visible; but these legs are slender and the nippers at the end are small; the third pair of legs is armed like the second pair; but the fourth and fifth pairs lack the pincers, and end in a single claw.

But the tale of the crayfish's legs is by no means told; for between and above the great pincers is a pair of short, small legs tipped with single claws, and fringed on their inner edges. These are the maxillapeds, or jaw-feet; and behind them, but too close to be seen easily, are two more pairs of jaw-feet. As all of these jaw-feet assist at meals, the crayfish apparently always has a "three fork" dinner; and as if to provide accommodations for so many eating utensils, it has three pairs of jaws all working sidewise, one behind the other. Two of these pairs are maxillae and one, mandibles. The mandibles are the only ones we see as we look in between the jaw-feet; they are notched along the biting edge. Connected with the maxillae, on each side, are two pairs of threadlike flappers, that wave back and forth vigorously and have to do with setting up currents of water over the gills.

Thus we see that, in all, the crayfish has three pairs of jaw-feet, one pair of great nippers and four pairs of walking feet, two of which also have nippers and are used for digging and carrying.

When we look upon the crayfish from above, we see that the head and thorax are fastened solidly together, making what is called a cephalothorax. The cephalothorax is covered with a shell called the carapace, which is the name given also to the upper part of the turtle's shell. The suture where the head joins the thorax is quite evident. In looking at the head, the eyes first attract our attention; each is black and oval and placed on the tip of a stalk, so it can be extended or retracted or pushed in any direction, to look for danger. These eyes are like the compound eyes of insects, in that they are made up of many small eyes, set together in a honeycomb pattern.
The long antennæ are as flexible as braided whiplashes, large at the base and ending in a threadlike tip. They are composed of many segments, the basal ones being quite large. Above the antennæ on each side, is a pair of shorter ones called antennules, which come from the same basal segment; the lower one is the more slender and is usually directed forward; the upper one is stouter, curves upward, and is kept always moving, as if it were constantly on the alert for impressions. The antennæ are used for exploring far ahead or behind the creature, and are often thrust down into the mud and gravel at the bottom of the aquarium, as if probing for treasure. The antennules seem to give warning of things closer at hand. Between the antennæ and antennules is a pair of finger-like organs, that are hinged at the outer ends and can be lifted back, if we do it carefully.

In looking down upon a crayfish, we can see six abdominal segments and the flaring tail at the end, which is really another segment greatly modified. The first segment, or that next to the cephalothorax, is narrow; the others are about equal in size, each graceful in shape, with a widened part at each side which extends down along the sides of the creature. These segments are well hinged together so that the abdomen may be completely curled beneath the cephalothorax. The plates along the sides are edged with fringe. The tail consists of five parts, one semicircular in the center, and two fan-shaped pieces at each side, and all are margined with fringe. This tail is a remarkable organ. It can be closed or extended sidewise like a fan; it can be lifted up or curled beneath.

Looking at the crayfish from below, we see on the abdomen some very beautiful featherlike organs called swimmerets. Each swimmeret consists of a basal segment with twin paddles joined to its tip, each paddle being narrow and long and fringed with hairs. The mother crayfish has four pairs of these, one pair on each of the second, third, fourth and fifth segments; her mate has an additional larger pair on the first segment. These swimmerets, when at rest, lie close to the abdomen and are directed forward and slightly inward. When in motion, they paddle with a backward, rhythmic motion, the first pair setting the stroke and the other pairs following in succession. This motion sends the body forward, and the swimmerets are chiefly used to aid the legs in forward locomotion. A crayfish, on the bottom of a pond, seems to glide about with great ease; but place it on land, and it is an awkward walker. The reason for this difference lies, I believe, in the aid given by the swimmerets when the creature is in water. Latter says: "In walking, the first three pairs of legs pull and the fourth pair pushes. Their order of movement is as follows: The first on the right and the third on the left side move together, next the third right and the first left, then the second right and fourth left, and lastly the fourth right and second left."

When the crayfish really wishes to swim, the tail is suddenly brought into use; it is thrust out backward, lays hold of the water by spreading out widely, and then doubles under with a spasmodic jerk which pulls the creature swiftly backward.

The crayfish’s appearance is magically transformed when it begins to swim; it is no longer a creature of sprawling awkward legs and great clumsy nippers; now, its many legs lie side by side supinely and the great claws are limp and flow along in graceful lines after the body, all obedient to the force which sends the creature flying through the water. I cannot discover that the swimmerets help in this movement.
A crayfish.
Drawn by Anna C. Stryke.

The mother crayfish has another use for her swimmerets; in the spring, when she is ready to lay eggs, she cleans off her paddles with her hind legs, covers them with waterproof glue, and then plasters her eggs on them in grapelike clusters of little dark globules. What a nice way to look after her family! The little ones hatch, but remain clinging to the maternal swimmerets, until they are large enough to scuttle around on the brook bottom and look out for themselves.

The breathing apparatus of the crayfish cannot be seen without dissection. All the walking legs, except the last pair, have gills attached to that portion of them which joins the body, and which lies hidden underneath the sides of the carapace or shell. The blood is forced into these gills, sends off its impurities through their thin walls and takes in the oxygen from the water, currents of which are kept steadily flowing forward.

Crayfishes haunt still pools along brooksides and river margins and the shallow ponds of our fresh waters. There they hide beneath sticks and stones, or in caves of their own making, the doors of which they guard with the big and threatening nippers, which stand ready to grapple with anybody that comes to inquire if the folks are at home. The upper surface of the crayfish's body is always so nearly the color of the brook bottom, that the eye seldom detects the creature until it moves; and if some enemy surprises one, it swims off with terrific jerks which roil all the water around and thus covers its retreat. In the winter, our brook forms hibernate in the muddy bottoms of their summer haunts. There are many species; some in our Southern States, when the dry season comes on, live in little wells which they dig deep enough to reach water. They heap
up the soil which they excavate around the mouth of the well, making
well-curbs of mud; these are ordinarily called "crawfish chimneys." The
crayfishes find their food in the flotsam and jetsam of the pool. They
seem fond of the flesh of dead fishes and are often trapped by its use as
bait.

The growth of the crayfish is like that of insects; as its outer covering
is a hard skeleton that will not stretch, it is shed as often as necessary; it
breaks open down the middle of the back of the carapace, and the soft-
bodied creature pulls itself out, even to the last one of its claws. While its
new skin is yet elastic, it stretches to its utmost; but this skin also
hardens after a time and is, in its turn, shed. Woe to the crayfish caught
in this helpless, soft condition after molting! For it then has no way to
protect itself. We sometimes find the old skin floating, perfect in every
detail, and so transparent that it seems the ghost of a crayfish.

Not only is the crayfish armed in the beginning with a great number of
legs, antennæ, etc., but if it happens to lose any of these organs, they will
grow again. It is said that, when attacked, it can voluntarily throw off
one or more of its legs. We have often found one of these creatures with
one of the front claws much larger than the other; it had probably lost
its big claw in a fight, and the new growth was not yet completed.

I have been greatly entertained by watching a female crayfish make
her nest in my aquarium which has, for her comfort, a bottom of three
inches of clean gravel. She always commences at one side by thrusting
down her antennæ and nippers between the glass and stones; she seizes a
pebble in each claw and pulls it up and in this way starts her excavation;
but when she gets ready to carry off her load, she comes to the task with
her tail tucked under her body, as a lady tucks up her skirts when she has
something to do that requires freedom of movement. Then with her
great nippers and the two pairs of walking feet, also armed with nippers,
she loads up as much as she can carry between her great claws and her
breast. She keeps her load from overflowing by holding it down with her
first pair of jaw-feet, just as I have seen a schoolboy use his chin, when
carrying a too large load of books; and she keeps the load from falling out
by supporting it from beneath with her first pair of walking legs. Thus,
she starts off with her "apron" full, walking on three pairs of feet, until
she gets to the dumping place; then she suddenly lets go and at the same
time her tail straightens out with a gesture which says plainly, "There!"
Sometimes when she gets a very large load, she uses her second pair of
walking legs to hold up the burden, and crawls off successfully, if not with
ease, on two pairs of legs,—a most unnatural quadruped.

I had two crayfishes in a cage in an aquarium, and each made a nest in
the gravel at opposite ends of the cage, heaping up the debris into a partition
between them. I gave one an earthworm, which she promptly
seized with her nippers; she then took up a good sized pebble in the nip-
ers of her front pair of walking legs, glided over to the other nest, spite-
fully threw down both worm and pebble on top of her fellow prisoner, and
then sped homeward. Her victim responded to the act by rising up and
expressing perfectly, in his attitude and the gestures of his great claws,
the most eloquent of crayfish profanity. In watching crayfishes carry
pebbles, I have been astonished to see how constantly the larger pair of
jaw-feet are used to help pick up and carry the loads.
LESSON CVIII
THE CRAYFISH

Leading thought—The crayfish, or crawfish, as it is sometimes called, has one pair of legs developed into great pincers for seizing and tearing its food and for defending itself from enemies. It can live in mud or water. It belongs to the same animal group as do the insects, and it is a near cousin of the lobster.

Method—Place a crayfish in an aquarium (a battery jar or a two-quart Mason jar) in the schoolroom, keeping it in clear water until the pupils have studied its form. It will rise to explore the sides of the aquarium at first, and thus show its mouth parts, legs and swimmerets. Afterwards, place gravel and stone in the bottom of the aquarium, so that it can hide itself in a little cavity which it will make by carrying pebbles from one side. Wash the gravel well before it is put in, so that the water will be unclouded and the children can watch the process of excavation.

Observations—1. What is there peculiar about the crayfish which makes it difficult to pick it up? Examine one of these great front legs carefully and see how wonderfully it is made. How many parts are there to it? Note how each succeeding part is larger from the body to the claws. Note the tips which form the nippers or chela, as they are called. How are they armed? How are the gripping edges formed to take hold of an object? How wide can the nippers be opened, and how is this done? Note the two segments behind the great claw and describe how they help the work of the nippers.

2. Study the pair of legs behind the great claws or chela, and compare the two pairs, segment by segment. How do they differ except as to size? How do the nippers at the end compare with the big ones? Look at the next pair of legs behind these; are they similar? How do the two pairs of hind legs differ in shape from the two pairs in front of them?

3. Look between the great front claws and see if you can find another pair of small legs. Can you see anything more behind or above these little legs?

4. When the crayfish lifts itself up against the side of the jar, study its mouth. Can you see a pair of notched jaws that work sidewise? Can you see two or three pairs of threadlike organs that wave back and forth in and out the mouth?

5. How many legs, in all, has the crayfish? What are the short legs near the mouth used for? What are the great nippers used for? How many legs does the crayfish use when walking? In what order are they moved? Is the hind pair used for pushing? What use does it make of the pincers on the first and second pairs of walking legs?

6. Look at the crayfish from above; the head and the covering of the thorax are soldered together into one piece. When this occurs, the whole is called a cephalothorax; and the cover is called by the same name as the upper shell of the turtle, the carapace. Can you see where the head is joined to the thorax?

7. Look carefully at the eyes. Describe how they are set. Can they be pushed out or pulled in? Can they be moved in all directions? Of what advantage is this to the crayfish?

8. How many antennae has the crayfish? Describe the long ones and tell how they are used. Do the two short ones on each side come from the same basal segment? These little ones are called the antennules.
Describe the antennules of each side and tell how they differ. Can you see the little fingerlike organs which clasp above the antennae and below the antennules on each side of the head? Can these be moved?

9. Look at the crayfish from above. How many segments are there in the abdomen? Note how graceful the shape of each segment. Note that each has a fan-shaped piece down the side. Describe how the edges of the segments along the sides are margined.

10. Of how many pieces is the tail made? Make a sketch of it. How are the pieces bordered? Can the pieces shut and spread out sideways? Is the tail hinged so it can be lifted up against the back or curled under the body?

11. Look underneath the abdomen and describe the little fringed organs called the swimmerets. How many are there?

12. How does the crayfish swim? With what does it make the stroke? Describe carefully this action of the tail. When it is swimming, does it use its swimmerets? Why do not the many legs and big nippers obstruct the progress of the crayfish, when it is swimming?

13. When does the crayfish use its swimmerets? Do they work so as to push the body backward or forward? Do you know to what use the mother crayfish puts her swimmerets?

14. Do you know how crayfishes breathe? Do you know what they eat and where they find it?

15. Where do you find crayfishes? Where do they like to hide? Do they go headfirst into their hiding place, or do they back in? Do they stand ready to defend their retreat? When you look down into the brook, are the crayfishes usually seen until they move? Why is this? Where do the crayfishes pass the winter? Did you ever see the crayfish burrows or mud chimneys?

16. If the crayfish loses one of its legs or antennae, does it grow out again? How does the crayfish grow?

17. Put a crayfish in an aquarium which has three inches of coarse gravel on the bottom, and watch it make its den. How does it loosen up a stone? With how many legs does it carry its burden of pebbles when digging its cave? How does it use its jaw-feet, its nippers, and its first and second pairs of walking legs in this work?

“A rock-lined, wood-embosomed nook,
Dim cloister of the chanting brook!
A chamber within the channelled hills,
Where the cold crystal brims and spills,
By dark-browed caverns blackly flows,
Falls from the cleft like crumbling snows,
And purls and splashes, breathing round
A soft, suffusing mist of sound.”

—J. T. TROWBRIDGE.
DADDY-LONGLEGS, OR GRANDFATHER GREYBEARD

Teacher's Story

WONDER if there ever was a country child who has not grasped firmly the leg of one of these little sprawling creatures and demanded: "Grandfather Greybeard, tell me where the cows are or I'll kill you," and Grandfather Greybeard, striving to get away, puts out one of his long legs this way, and another that way, and points in so many directions that he usually saves his life, since the cows must be somewhere. It would be more interesting to the children and less embarrassing to the "daddy" if they were taught to look more closely at those slender, hairlike legs.

"Daddy's" long legs are seven jointed. The first segment is seemingly soldered fast to the lower side of his body, and is called the coxa. The next segment is a mere knob, usually black and ornamental, and is called the trochanter. Then comes the femur, a rather long segment directed upward; next is a short swollen segment—the "knee joint" or patella; next the tibia, which is also rather long. Then comes the metatarsus and tarsus, which seemingly make one long downward-directed segment, out-curving at the tips, on which the "daddy" tip-toes along.

I have seen a "daddy" walk into a drop of water and his foot was never wetted, so light was his touch on the water surface film. The second pair of legs is the longest; the fourth pair next, and the first pair usually the shortest. The legs of the second pair are ordinarily used in exploring the surroundings. Notice that, when the "daddy" is running, these two legs are spread wide apart and keep in rapid motion; their tips, far more sensitive than any nerves of our own, tell him the nature of his surroundings, by a touch so light that we cannot feel it on the hand. We have more respect for one of these hairlike legs, when we know it is capable of transmitting intelligence from its tip.

The "daddy" is a good traveler and moves with remarkable rapidity. And why not? If our legs were as long in comparison as his, they would be about forty feet in length. When the "daddy" is running, the body is always held a little distance above the ground; but when the second pair of legs suggests to him that there may be something good to eat in the neighborhood, he commences a peculiar teetering motion of the body, apparently touching it to the ground at every step; as the body is carried tilted with the head down, this movement enables the creature to explore the surface below him with his palpi, which he ordinarily carries bent beneath his face, with the ends curled up under his "chin." The palpi have four segments that are easily seen, and although they are ordinarily carried bent up beneath the head, they can be extended out quite a distance if "daddy" wishes to test a substance. The end segment of the palpus is tipped with a single claw.
Beneath the palpi is a pair of jaws; these, in some species, extend beyond the palpi. I have seen a daddy-longlegs hold food to his jaws with his palpi and he seemed also to use them for stuffing it into his mouth.

The body of the daddy-longlegs is a little oblong object, looking more like a big grain of wheat than anything else, because in these creatures the head, thorax and abdomen are all grown together compactly. On top of the body, between the feeler-legs, is a little black dot, and to the naked eye it would seem that if this were an organ of sight the creature must be a Cyclops with only one eye. But under the lens this is seen to be a raised knob and there is on each side of it, a little shining black eye. We hardly see the use of two eyes set so closely together, but probably the "daddy" does.

The most entertaining thing which a "daddy" in captivity is likely to do, is to clean his legs; he is very particular about his legs, and he will grasp one close to the basal joint in his jaws and slowly pull it through, meanwhile holding the leg up to the jaws with the palpi, while he industriously nibbles it clean for the whole length to the very toe. Owing to the likelihood of his losing one of his legs, he has the power of growing a new one; so we often see a "daddy" with one or more legs only half grown.

There are many species of daddy-longlegs in the United States, and some of them do not have the characteristic long legs. In the North, all except one species die at the approach of winter; but not until after the female, which, by the way, ought to be called "granny-longlegs," has laid her eggs in the ground, or under some protecting stone, or in some safe crevice of wood or bark. In the spring the eggs hatch into tiny little creatures which look just like the old daddy-longlegs, except for their size. They get their growth like insects, by shedding their skins as fast as they outgrow them. It is interesting to study one of these cast skins with a lens. There it stands with a slit down its back, and with the skin of each leg absolutely perfect to the tiny claw! Again we marvel at these legs that seem so threadlike, and which have an outer covering that can be shed. Some say that the daddy-longlegs live on small insects which they straddle over and pounce down upon, and some say they feed upon decaying matter and vegetable juices. This would be an interesting line of investigation for pupils, since they might be able to give many new facts about the food of these creatures. The "daddies" are night prowlers, and like to hide in crevices by day, waiting for the dark to hunt for their food. They have several common names. Besides the two given they
are called “harvestmen” and the French call them “haymakers.” Both of these names were very probably given, because the creatures appear in greater numbers at the time of haying and harvesting.

LESSON CIX
THE DADDY-LONGLEGS

Leading thought—These long-legged creatures have one pair of legs too many to allow them to be classed with the insects. They are more nearly related to the spiders, who also have eight legs. They are pretty creatures when examined closely, and they do many interesting things.

Method—Put a grandfather greybeard in a breeding cage or under a large tumbler, and let the pupils observe him at leisure. If you place a few drops of sweetened water at one side of the cage, the children will surely have an opportunity to see this amusing creature clean his legs.

Observations—1. Where did you find the harvestman? What did it do as soon as it was disturbed? How many names do you know for this little creature?

2. A “daddy” with such long legs certainly ought to have them studied. How many segments in each leg? How do the segments look? How do the legs look where they are fastened to the body? Which is the longest pair of legs? The next? The next? The shortest?

3. If you had such long stilts as he has, they would be about forty feet long. Would you lift yourself that high in the air? Does the “daddy” lift his body high or swing it near the ground? What shape is the body? Can you see if there is a distinct head? Can you see a black dot on top of the front end of the body? If you should see this dot through a microscope it would prove to be two bright black eyes. Why should the daddy’s eyes be on top?

4. Do you see a pair of organs that look like feelers at the front end of the body? These are called palpi. How does he use his palpi? Give him a little bruised or decaying fruit, and see him eat. Where do you think his mouth is? Where does he keep his palpi when he is not using them for eating?

5. Note what care he takes of his legs. How does he clean them? Which does he clean the oftenest? Do you think the very long second pair of legs is used as much for feeling as for walking? Put some object in front of the “daddy” and see him explore it with his legs. How much of the leg is used as a foot when the “daddy” stands or runs?

6. When running fast, how does the “daddy” carry his body? When exploring how does he carry it? Do you ever find the “daddy” with his body resting on the surface on which he is standing? When resting, are all eight of his legs on the ground? Which are in the air? Is the head end usually tilted up or down?

7. Do you see the daddy-longlegs early in the spring? When do you find him most often? How do you suppose he passes the winter in our climate? Have you ever seen a “daddy” with one leg much shorter than the other? How could you explain this?

8. Try and discover what the daddy-longlegs eats, and where he finds his food?
HE spiders are the civil engineers among the small inhabitants of our fields and woods. They build strong suspension bridges, from which they hang nets made with exquisite precision; and they build aeroplanes and balloons, which are more efficient than any that we have yet constructed; for although they are not exactly dirigible, yet they carry the little balloonists where they wish to go, and there are few fatal accidents. Moreover, the spiders are of much economic importance, since they destroy countless millions of insects every year, most of which are noxious—like flies, mosquitoes, bugs and grasshoppers.

There is an impression abroad that all spiders are dangerous to handle. This is a mistake; the bite of any of our common spiders is not nearly so dangerous as the bite of a malaria-laden mosquito. Although there is a little venom injected into the wound by the bite of any spider, yet there is no species found in the Northern States whose bite is sufficiently venomous to be feared.

There is no need for studying the anatomy of the spider closely in nature-study. Our interest lies much more in the wonderful structures made by the spiders, than in a detailed study of the little creatures themselves.

Cobwebs

"Here shy Arachne winds her endless thread,
And weaves her silken tapestry unseen,
Veiling the rough-hewn timbers overhead,
And looping gossamer festoons between."

—Elizabeth Akers.

Our house spiders are indefatigable curtain-weavers. We never suspect their presence, until suddenly their curtains appear before our eyes, in the angles of the ceilings—invisible until laden with dust. The cobwebs are made of crisscrossed lines, which are so placed as to entangle any fly that comes near. The lines are stayed to the sides of the wall and to each other quite firmly, and thus they are able to hold a fly that touches them. The spider is likely to be in its little den at the side of the web; this den may be in a crevice in the corner or in a tunnel made of the silk. As soon as a fly becomes entangled in the web the spider runs to it, seizes it in its jaws, sucks its blood, and then throws away the shell, the wings and legs. If a spider is frightened, it at first tries to hide and then may drop by a thread to the floor. If we catch the little acrobat it will usually "play possum" and we may examine it more closely through a lens. We shall find it is quite different in form from an insect. First to be noted, it has eight legs; but most important of all, it has only two parts to the body. The head and thorax are consolidated into one piece, which is called the cephalothorax. The abdomen has no segments like that of the insects, and is joined to the cephalothorax by a short, narrow stalk. At the front
cf the head is the mouth, guarded by two mandibles, each ending in a sharp claw, at the tip of which the poison gland opens. It is by thrusting these mandibles into its prey that it kills its victims. On each side of the mandible is a palpus, which in the males is of very strange shape. The eyes are situated on the top of the head. There are usually four pairs of these eyes, and each looks as beady and alert as if it were the only one.

The spinning organs of the spider are situated near the tip of the abdomen, while the spinning organ of the caterpillar is situated near its lower lip. The spider's silk comes from two or three pairs of spinnerets which are fingerlike in form, and upon the end of each are many small tubes from which the silk is spun. The silk is in a fluid state as it issues from the spinnerets, but it hardens immediately on contact with the air. In making their webs, spiders produce two kinds of silk, one is dry and inelastic, making the framework of the web; the other is sticky and elastic, clinging to anything that it touches. The body and the legs of spiders are usually hairy.

LESSON CX

COBWEBS

Leading thought—The cobwebs which are found in the corners of ceilings and in other dark places in our houses, are made by the house spider which spins its web in these situations for the purpose of catching insects.

Method—The pupils should have under observation a cobweb in a corner of a room, preferably with a spider in it.

Observations—1. Is the web in a sheet or is it a mass of crisscrossed, tangled threads? How are the threads held in place?
2. What is the purpose of this web? Where does the spider hide? Describe its den.
3. If a fly becomes tangled in a web, describe the action of the spider. Does the spider eat all of the fly? What does it do with the remains?
4. If the spider is frightened, what does it do? Where does the silken thread come from, and how does its source differ from the source of the silken thread spun by caterpillars?
5. Imprison a spider under a tumbler or in a vial, and look at it very carefully. How many legs has it? How does the spider differ from insects in this respect? How many sections are there to the body? How does the spider differ from insects in this respect?
6. Look closely at the head. Can you see the hooked jaws, or fangs? Can you see the palpi on each side of the jaws? Where are the spider's eyes? How many pairs has it?

When the tangled cobweb pulls
The cornflower's cap away,
And the lilies tall lean over the wall
To bow to the butterfly
It is July.

—Susan Hartley Swett
THE FUNNEL WEB
Teacher's Story

"And dew-bright webs festoon the grass
In roadside fields at morning."

—Elizabeth Akers.

Sometimes on a dewy morning, a field will seem carpeted with these webs, each with its opening stretched wide, and each with its narrow hallfay of retreat. The general shape of the web is like that of a broad funnel with a tube leading down at one side. This tube is used as a hiding place for the spider, which thus escapes the eyes of its enemies, and also keeps out of sight of any insects that might be frightened at seeing it, and so avoid the web. But the tube is no cul-de-sac; quite to the contrary, it has a rear exit, through which the spider, if frightened, escapes from attack.

The web is formed of many lines of silk crossing each other irregularly, forming a firm sheet. This sheet is held in place by many guy-lines, which fasten it to surrounding objects. If the web is touched lightly, the spider rushes forth from its lair to seize its prey; but if the web be jarred roughly, the spider speeds out through its back door and can be found only with difficulty. The smaller insects of the field, such as flies and bugs, are the chief food of this spider; it rarely attempts to seize a grown grasshopper.
The funnel-shaped webs in dark corners of cellars are made by a species which is closely related to the grass spider and has the same general habits, but which builds in these locations instead of in the grass.

LESSON CXI

The Funnel Web

Leading thought—The grass spider spins funnel-shaped webs in the grass to entrap the insects of the field. This web has a back door.

Method—Ask the pupils to observe a web on the grass with a spider within it.

Observations—1. What is the general shape of the web? Is there a tunnel leading down from it? Why is it called a funnel web?

2. Of what use is the funnel tube, and what is its shape? Where does it lead, and of what use is it to the spider? Can you corner a spider in its funnel tube? Why not?

3. How is the web made? Is there any regularity in the position of the threads that make it? How is it stayed in place?

4. Touch the web lightly, and note how the spider acts? Jar the web roughly, and note how the spider do?

5. What insects become entangled in this web?

6. Compare this web with similar funnel webs found in corners of cellars, sheds or piazzas, and see if you think the same kind of spider made both.

The Orb-Web

Teacher's Story

All the structures made by the lower creatures, the orb-web of the spider is, beyond question, the most intricate and beautiful in design, and the most exquisite in workmanship. The watching of the construction of one of these webs is an experience that brings us close to those mysteries which seem to be as fundamental as they are inexplicable in the plan of the universe. It is akin to watching the growth of a crystal, or the stars wheeling across the heavens in their appointed courses.

The orb-web of the large, black and yellow garden spider is, perhaps, the best subject for this study, although many of the smaller orbs are far more delicate in structure. These orb-webs are most often placed vertically, since they are thus more likely to be in the path of flying insects. The number of radii, or spokes, differs with the different species of spiders, and they are usually fastened to a silken framework, which in turn is fastened by guy-lines to surrounding objects. These radii or spokes are connected by a continuous spiral line, spaced regularly except at the center or hub; this hub or center is of more solid silk, and is usually surrounded by an open space; and it may be merely an irregular network, or it may have wide bands of silk laid across it.

The radii or spokes, the guy-lines, the framework and the center of the web are all made of inelastic silk, which does not adhere to an object that touches it. The spiral line, on the contrary, is very elastic, and ad-
heres to any object brought in contact with it. An insect which touches one of these spirals and tries to escape, becomes entangled in the neighboring lines and is thus held fast until the spider can reach it. If one of these elastic lines be examined with a microscope, it is a most beautiful object. There are strung upon it, like pearls, little drops of sticky fluid, which render it not only elastic but adhesive.

Some species of orb-weavers remain at the center of the web, while others hide in some little retreat near at hand. If in the middle, the spider always keeps watchful claws upon the radii of the web so that if there is any jarring of the structure by an entrapped insect, it is at once apprised of the fact; if the spider is in a den at one side, it keeps a claw upon a trap line which is stretched tightly from the hub of the web to the den, and thus communicates any vibration of the web to the hidden sentinel. When the insect becomes entangled, the spider rushes out and envelops it in a band of silk, which feat it accomplishes, by turning the insect over and over rapidly, meanwhile spinning a broad, silken band which swathes it. It may bite the insect before it begins to swathe it in silk, or afterwards. It usually hangs the swathed insect to the web near where it was caught, until ready to eat it; it then takes the prey to the center of the web, if there is where the spider usually sits, or to its den at one side, if it is a den-making species, and there sucks the insect's blood, carefully throwing away the hard parts.

The spider does not become entangled in the web, because, when it runs it steps upon the dry radii and not upon the sticky spiral lines. During the busy season, the spider is likely to make a new web every twenty-four hours, but this depends largely upon whether the web has meanwhile been destroyed by large insects.

The spider's method of making its first bridge is to place itself upon some high point and, lifting its abdomen in the air, to spin out on the breeze a thread of silk. When this touches any object, it adheres, and the spider draws in the slack until the line is "taut;" it then travels across this bridge, which is to support its web, and makes it stronger by doubling the line. From this line, it stretches other lines by fastening a thread to one point, and then walking along to some other point, spinning the thread as it goes and holding the line clear of the object on which it is walking by means of one of its hind legs. When the right point is reached, it pulls the line tight, fastens it, and then, in a similar fashion, proceeds to make
another. It may make its first radius by dropping from its bridge to some point below; then climbing back to the center, it fastens the line for another radius, and spinning as it goes, walks down and out to some other point, holding the thread clear and then pulling it tight before fastening it. Having thus selected the center of the web, it goes back and forth to and from it, spinning lines until all of the radii are completed and fastened at one center. It then starts at the center and spins a spiral, laying it onto the radii to hold them firm. However, the lines of this spiral are farther apart and much more irregular than the final spiral. Thus far, all of the threads the spider has spun are inelastic and not sticky; and this first, or temporary spiral is used by the spider to walk upon when spinning the final spiral. It begins the latter at the outer edge instead of at the center, and works toward the middle. As the second spiral progresses, the spider with its jaws cuts away the spiral which it first made, and which it has used as a scaffolding. A careful observer may often see remnants of this first spiral on the radii between the lines of the permanent spiral. The spider works very rapidly and will complete a web in a very short time. The final spiral is made of the elastic and adhesive silk.

References—Comstock’s Manual; Common Spiders, Emerton; The Spider Book, Comstock; Nature’s Craftsmen, McCook.

LESSON CXII

The Orb-web

Leading thought—No structure made by a creature lower than man is so exquisitely perfect as the orb-web of the spider.

Method—There should be an orb-web where the pupils can observe it, preferably with the spider in attendance.

Observations—1. Is the orb-web usually hung horizontally or vertically?

2. Observe the radii, or “spokes,” of the web. How many are there? How are they fastened to surrounding objects? Is each spoke fastened to some object or to a framework of silken lines?

3. Observe the silken thread laid around the spokes. Is it a spiral line or is each circle complete? Are the lines the same distance apart on the outer part of the web as at the center? How many of the circling lines are there?

4. Is the center of the web merely an irregular net, or are there bands of silk put on in zigzag shape?

5. Touch any of the “spokes” lightly with the point of a pencil. Does it adhere to the pencil and stretch out as you pull the pencil away? Touch one of the circling lines with a pencil point, and see if it adheres to the point and is elastic. What is the reason for this difference in the stickiness and elasticity of the different kinds of silk in the orb-web?

6. If an insect touches the web, how does it become more entangled by seeking to get away?

7. Where does the spider stay, at the center of the web or in a little retreat at one side?

8. If an insect becomes entangled in the web, how does the spider discover the fact and act?

9. If the spider sits at the middle of the orb, it has a different method for discovering when an insect strikes the web than does the spider that hides in a den at one side. Describe the methods of each.
10. How does the spider make fast an insect? Does it bite the insect before it envelops it in silk? Where does it carry the insect to feed upon it?

11. How does the spider manage to run about its web without becoming entangled in the sticky thread? How often does the orb-weaver make a new web?

How an Orb-web is Made

Spiders may be seen making their webs in the early morning or in the evening. Find an orb-web with a spider in attendance; break the web without frightening the spider and see it replace it in the early evening, or in the morning about daybreak. An orb-weaver may be brought into the house on its web, when the web is on a branch, and placed where it will not be disturbed, and thus be watched at leisure.

Observations—1. How does the spider manage to place the supporting line between two points?

2. How does it make the framework for holding the web in place?

3. How does it make the first radius?

4. How does it make the other radii and select the point which is to be the center of the web?

5. How does it keep the line which it is spinning clear of the line it walks upon?

6. After the radii are all made, are they fastened at the center?

7. How and where does the spider first begin to spin a spiral? Are the lines of this spiral close together or far apart? For what is the first spiral used?

8. Where does it begin to spin the permanent spiral? Where does it walk when spinning it? By the way it walks on the first spiral, do you think it is sticky and elastic? What does it do with the first spiral while the second one is being finished?

9. If the center of the web has a zigzag ribbon of silk, when was it put on?

10. How many minutes did it take the spider to complete the web?

Supplementary reading—“Argiope of The Silver Shield,” Insect Stories, Kellogg.
A filmy-dome web with its maker.
Photo by J. H. Comstock.
IKE bubbles cut in half, these delicate domes catch the light rays and separate them like a prism into waves of rainbow colors. One of these domes is usually about the size of an ordinary bowl, and is suspended with the opening on the lower side. It is held in place by many guy-lines which attach it to surrounding objects. Above a filmy dome are always stretched many crisscrossed threads for some distance up. These are for the purpose of hindering the flight of insects, so that they will fall into the web. The little spider, which always hangs, back downward, just below the center of the dome, rushes to its prey from the lower side, pulls it through the meshes of the web, and feeds upon it. But any remains of the insect or pieces of sticks or leaves which may drop upon the web, it carefully cuts out and drops to the ground, mending the hole very neatly.

LESSON CXIII
THE FILMY DOME

Leading thought—One little spider spins a filmy dome, beneath the apex of which it hangs, back downward, awaiting its prey.

Method—On a sunny day in late summer or early autumn, while walking along woodland paths, the careful observer is sure to see suspended among the bushes or in the tops of weeds, or among dead branches of young hemlocks, the filmy dome webs. They are about as large as a small bowl, and usually so delicate that they cannot be seen unless the sun shines upon them; they are likely to be exquisitely iridescent under the sun's rays. Such a dome may be studied by a class or by the pupils individually.

Observations—1. Where did you discover the filmy dome? What is the size of the dome? Does it open above or below? How is it held in place?
2. Are there many crisscrossed threads extending above the dome? If so, what do you think they are for?
3. Where does the spider stay? Is the spider large and heavy, or small and delicate?
4. What does the spider do if an insect becomes entangled in its web?
5. Throw a bit of stick or leaf upon a filmy dome web, and note what becomes of it.

"With spiders I had friendship made,
And watch'd them in their sullen trade."
—Prisoner of Chillon.
BALLOONING SPIDERS
Teacher's Story

If we look across the grass some warm sunny morning or evening of early fall, we see threads of spider silk clinging everywhere; these are not regular webs for trapping insects, but are single threads spun from grass stalk to grass stalk until the fields are carpeted with glistening silk. We have a photograph of a plowed field, taken in autumn, which looks likes the waves of a lake; so completely is the ground covered with spider threads that it shows the "path of the sun" like water.

When we see so many of these random threads, it is a sign that the young spiders have started on their travels, and it is not difficult then to find one in the act. The spiderling climbs up some tall object, like a twig or a blade of grass, and sends out its thread of silk upon the air. If the thread becomes entangled, the spiderling sometimes walks off on it, using it as a bridge, or sometimes it begins again. If the thread does not become entangled with any object, there is soon enough given off, so that the friction of the air current upon it supports the weight of the body of the little creature, which promptly lets go its hold of earth as soon as it feels safely buoyed up, and off it floats to lands unknown. Spiders thus sailing through the air have been discovered in mid-ocean.

Thus we see that the spiders have the same way of distributing their species over the globe, as have the thistles and dandelions. It has been asked what the spiders live upon while they are making these long journeys, especially those that have drifted out to sea. The spider has very convenient habits of eating. When it finds plenty of food it eats a great deal; but in time of famine it lives on, apparently comfortably, without eating. One of our captive spiders was mislaid for six months and when we found her she was as full of "grit" as ever, and she did not seem to be abnormally hungry when food was offered her.

“A noiseless, patient spider,
I mark’d where, on a little promontory, it stood isolated:
Mark’d how, to explore the vacant, vast surrounding,
It launch’d forth filament, filament, filament out of itself:
Ever unreeling them—ever tirelessly speeding them.

“And you, O my soul, where you stand,
Surrounded, surrounded, in measureless oceans of space,
Ceaselessly musing, venturing, throwing, seeking the spheres to connect them;
Till the bridge you will need be form’d—till the ductile anchor hold;
Till the gossamer thread you fling catch somewhere, O my soul.”

—WALT WHITMAN.
LESSON CXIV

Balooning Spiders

Leading thought—The young of many species of spiders scatter themselves like thistle seeds in balloons which they make of silk.

Method—These observations should be made out of doors during some warm sunny day in October. Read Nature’s Craftsmen, McCook, p. 182.

Observations—1. Look across the grass some warm sunny morning or evening of early fall, and note the threads of spider silk gleaming everywhere, not regular webs, but single threads spun from grass stalk to grass stalk, or from one object to another, until the ground seems glistening with silk threads.

2. Find a small spider on a bush, fence post, or at the top of some tall grass stalk; watch it until it begins to spin out its thread.

3. What happens to the thread as it is spun out?

4. If the thread does not become entangled in any surrounding object what happens? If the thread does become entangled, what happens?

5. How far do you suppose a spider can travel on this silken aeroplane? Why should the young spider wish to travel?

THE WHITE CRAB-SPIDER

Teacher’s Story

Here are certain spiders which are crablike in form, and their legs are so arranged that they can walk more easily sidewise or backward than forward. These spiders spin no webs, but lie in wait for their prey. Many of them live upon plants and fences and, in winter, hide in protected places.

The white crab-spider is a little rascal that has discovered the advantage of protective coloring as a means of hiding itself from the view of its victims, until too late to save themselves; the small assassin always takes on the color of the flower in which it lies concealed. In the white trillium, it is greenish white; while in the golden-rod its decorations are yellow. It waits in the heart of the flower, or in the flower clusters, until the visiting insect alights and seeks to probe for the nectar; it then leaps forward and fastens its fangs into its struggling victim. I have seen a crab-spider in a milkweed attack a bee three times its size. This spider was white with lilac or purple markings. If disturbed, the crab-spider can walk off awkwardly or it may drop by a silken thread. It is especially interesting, since it illustrates another use for protective coloring; and also because this species seems to be able to change its colors to suit its surroundings.
LESSON CXV

THE WHITE CRAB-SPIDER

Leading thought—1. The white crab spider has markings upon its body of the same color as the flower in which it rests and is thus enabled to hide in ambush out of the sight of its victims—the insects which come to the flower for nectar.

Method—Ask the children to bring one of these spiders to school in the flower in which it was found; note how inconspicuous it is, and arouse an interest in the different colors which these spiders assume in different flowers.

Observations—1. What is the shape of the body of the crab-spider? Which of the legs are the longest? Are these legs directed forward or backward?

2. How is the body marked? What colors do you find upon it? Are the colors the same in the spiders found in the trilliums, as those in other flowers? Why is this? Do you think that the color of the spider keeps it from being seen?

3. Place the white spider which you may find in a trillium in a daffodil, and note if the color changes.

4. Do the crab-spiders make webs? How do they trap their prey?
HOW THE SPIDER MOTHERS TAKE CARE OF THEIR EGGS

Teacher's Story

PROTECTING her eggs from the vicissitudes of the weather seems to be the spider mother's chief care; though at the same time and by the same means, she protects them from the attacks of predacious insects. Many of the species make silken egg-sacs, which are often elaborate in construction, and are carefully placed in protected situations.

Often a little silvery disk may be seen attached to a stone in a field. It resembles a circular lichen on the stone, but if it is examined it is found to consist of an upper, very smooth, waterproof coat, while below is a soft, downy nest, completely enfolding the spider's eggs.

The egg-sacs of the cobweb weavers are often found suspended in their webs. One of the large orbweavers makes a very remarkable nest, which it attaches to the branches of weeds or shrubs. This sac is about as large as a hickory nut, and opens like a vase at the top. It is very securely suspended by many strong threads of silk, so that the blasts of winter cannot tear it loose. The outside is shining and waterproof, while inside it has a fit lining for a spiderling cradle.

Dr. Burt G. Wilder studied the development of the inmates of one of these nests by cutting open different nests at different periods of the winter. In the autumn, the nest contained five hundred or more eggs. These eggs hatched in early winter but it seemed foreordained that some of the little spiders were born for food for their stronger brethren. They seemed resigned to their fate, for when one of these victims was seized by its cannibalistic brother, it curled up its legs and submitted meekly. The result of this process was that, out of the five hundred little spiders hatched from the eggs, only a few healthy and apparently happy young spiders emerged from the nest in the spring, sustained by the nourishment afforded them by their own family, and fitted for their life in the outside world.

Some spiders make a nest for their eggs within folded leaves, and some build them in crevices of rocks and boards.

The running spiders, which are the large ones found under stones, make globular egg-sacs; the mother spider drags after her this egg-sac attached to her spinnerets; the young, when they hatch, climb upon their mother's back, and there remain for a time.

LESSON CXVI

The Nests of Spiders

Leading thought—The spider mothers have many interesting ways of protecting their eggs, which they envelop in silken sacs and place in safety.
Method—Ask the pupils to bring in all the spider egg-sacs that they can find. Keep some of them unopened, and open others of the same kind, and thus discover how many eggs are in the sac, and how many spiderlings come out. This is a good lesson for September and October.

Observations—1. In what situation did you find the nest? How was it protected from rain and snow? To what was it attached?

2. Of what texture is the outside of the sac? Is the outside made of waterproof silk? What is the texture of the lining?

3. How many eggs in this sac? What is the color of the eggs? When do the spiderlings hatch? Do as many spiders come out of the sac as there were eggs? Why is this?

The egg-sac of the large, black and yellow garden-spider suspended for the winter in a branch of golden-rod.

Photo by Slingerland.
BOOKS OF REFERENCE

The following list of nature books is by no means complete. It simply includes books which the author has consulted in her work as a teacher, and to which she naturally referred in the lessons. The list is given with the publishers for the convenience of those who may use this volume.

BIRD STUDY

American Birds—Wm. L. Finley—Scribners.
Birdcraft—Wright—MacMillan.
Bird Life—Chapman—Appleton.
Birds that Hunt and are Hunted—Blanchan—Doubleday, Page & Co.
Birds and Bees—John Burroughs—Houghton, Mifflin & Co.
Birds of the United States—Apgar—American Book Co.
Birds of Song and Story—Grinnell—Mumford, Chicago.
Birds in their Relation to Man—Weed & Dearborn—Lippincott.
Birds of Village and Field—Merriam—Houghton, Mifflin & Co.
Birds through an Opera Glass—Merriam—Houghton, Mifflin & Co.
Bob: The Story of a Mockingbird—Lanier—Scribner.
Citizen Bird—Wright—MacMillan.
Everyday Birds—Torrey—Houghton, Mifflin & Co.
Field Book of Wild Birds and their Music—Mathews—Putnam.
First and Second Book of Birds—Miller—Houghton, Mifflin & Co.
How to Attract the Birds—Blanchan—Doubleday, Page & Co.
Leaflets of National Association of Audubon Societies—141 Broadway, N. Y.
Nestlings of Forest and Marsh—Whedlock—A. C. McClurg & Co.
Neighbors with Wings and Fins—Johonnot—American Book Co.
Story of the Birds—Baskett—Appletons.
Stories About Birds—Kirby—Educational Publishing Co.
The Bird Book—Eckstorm—D. C. Heath & Co.
The Song of the Cardinal—Porter—Bobbs, Merrill & Co.
True Bird Stories—Miller—Houghton, Mifflin & Co.
Useful Birds and Their Protection—Forbush—Mass. Board of Agri.

FISH STUDY

American Food and Game Fishes—Jordan & Everman—Doubleday, Page & Co.
Fish Stories—Holder & Jordan—Henry Holt & Co.
Fisherman's Luck—Van Dyke—Scribners.
Neighbors with Wings and Fins—Johonnot—American Book Co.
Science Sketches—Jordan—McClurg.
The Freshwater Aquarium—Eggeling & Ehrenberg—Henry Holt & Co.
The Story of the Fishes—Baskett—Appletons.

BATRACHIAN AND REPTILE STUDY

American Natural History—Hornaday—Scribner.
Elementary Zoology—Kellogg—Henry Holt & Co.
Familiar Life of Field and Forest—Mathews—Appletons.
Serpents of Pennsylvania—Surface—State College, Penn.

MAMMAL STUDY

Animals of the World—Knight & Jenks—Frederick Stokes Co.
Animal Heroes—Thompson-Seton—Scribners.
A Watcher in the Woods—Dallas Lore Sharp—Century Co.
Black Beauty—Sewell—Lothrop.
Bob, Son of Battle—Olliphant—McClure, Phillips & Co.
Campfires of a Naturalist—Edwards—Appletons.
Camp Life in the Woods—Gibson—Harpers.
Concerning Cats—Winslow—Lothrop.
Domestic Animals—Burkett—Ginn & Co.
Domesticated Animals—Shaler—Scribners.
Dog of Flanders—Ouida—.
Familiar Life of Field and Forest—Mathews—Appletons.
Familiar Wild Animals—Lottridge—Henry Holt & Co.
Half Hours with Mammals—Holder—American Book Co.
Jungle Books, First and Second—Kipling—Century Co.
Life of Animals—Ingersoll—MacMillan.
Little Beasts of Field and Wood—Cram—Small, Maynard & Co.
Little Brother of the Bear—Long—Ginn & Co.
Little People of the Sycamore—Roberts—L. C. Page & Co.
Mack, His Book—Florence Leigh—Frederick Stokes Co.
Neighbors of Field, Wood and Stream—Grinnell—Frederick Stokes.
Neighbors with Claws and Hoofs—Johonnot—American Book Co.
Nights with Uncle Remus—Harris—McClure, Phillips & Co.
Rab and his Friends—Dr. John Brown—Houghton, Mifflin & Co.
Roof and Meadow—Dallas Lore Sharp—Century Co.
Secrets of the Woods—Wm. J. Long—Ginn & Co.
Squirrels and other Fur-bearers—Burroughs—Houghton, Mifflin & Co.
The Animals and Man—Kellogg—Henry Holt & Co.
The Horse—I. P. Roberts—Mac Millans.
The Face of the Fields—D. Lore Sharp—Houghton, Mifflin & Co.
The Case for the Goat—Various Authors—E. P. Dutton.
The Silver Fox—Seton—Century Co.
Two Little Savages—Seton—Doubleday, Page & Co.
True Tales of Birds and Beasts—Jordan—.
Ways of Wood Folk—Wm. J. Long—Ginn & Co.
Wild Animals I Have Known—Seton—Scribners.
Wild Life Near Home—Dallas Lore Sharp—Century Co.
Wild Life in Orchard and Field—Ingersoll—Harpers.
Wild Neighbors—Ingersoll—MacMillan.

INSECTS AND OTHER INVERTEBRATES

American Insects—Kellogg—Henry Holt & Co.
A. B. C. of Bee Culture—A. I. Root—A. I. Root Co., Medina, O.
Ant Communities—McCook—Harpers.
Caterpillars and their Moths—Elliot & Soule—Century Co.
Common Spiders—Emerton—Ginn & Co.
Earthworms—Darwin—Appletons.
Economic Entomology—Smith—Lippincotts.
Everyday Butterflies—Scudder—Houghton Mifflin & Co.
Grasshopper Land—Morley—A. C. McClurg & Co.
How to Keep Bees—Comstock—Doubleday Page & Co.
How to Know the Butterflies—Comstock—Appletons.
Insect Book—Howard—Doubleday Page & C.
Insect Life—Comstock—Appletons.
Insect Stories—Kellogg—Henry Holt & Co.
Life of the Honey Bee—Ticknor Edwards—Methuen & Co.
Mosquito Life—Mitchell—Putnams.
Moths and Butterflies—Ballard—Putnams.
Moths and Butterflies—Dickerson—Ginn & Co.
Nature’s Craftsmen—McCook—Harpers.
Outdoor Studies—Needham—American Book Co.
The Bee People—Morley—A. C. McClurg & Co.
The House Fly—Howard—Frederick S. Stokes Co.
Wasps and their Ways—Morley—A. C. McClurg & Co.
Ways of the Six-footed—Comstock—Ginn & Co.

NATURE-STUDY—MANUALS AND LITERATURE

Education through Nature—Munson—E. L. Kellogg & Co.
How Nature-Study Should be Taught—Bigelow—Hinds & Noble.
How to Study Nature—J. D. Wilson—Bardeen.
Nature-Study and Life—Hodge—Ginn & Co.
Nature-Study in the Common Schools—Jackman—Henry Holt & Co.
Nature-Study—Holtz—Scribner’s.
Nature-Study in the Lower-Grades—Cummings—American Book Co.
Nature-Study Lessons—Various Authors—Hinds Noble & Co.
Nature-Study—Overton & Hill—American Book Co.
Outlines in Nature-Study—Engel—Silver Burdett & Co.
Practical Nature-Study—Coulter & Patterson—Appletons.
Study of Nature—Schmucker—Lippincott.
Writings of H. D. Thoreau—Houghton, Mifflin & Co.
The Land of Little Rain—Mary Austin—Houghton Mifflin & Co.
The Flock—Mary Austin—Houghton Mifflin & Co.
Among Flowers and Trees with the Poets edited by Wait & Leonard—Lee & Shepard.
Nature in Verse comp. by Mary I. Lovejoy—Silver Burdett Co.
Poetry of the Seasons comp. by Mary I. Lovejoy—Silver Burdett Co.
Sharp Eyes, by Hamilton Gibson—Harpers.
Pageant of Summer—by Richard Jefferies—Mosher, Portland, Me.
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdomen (of insect)</td>
<td>312-314</td>
</tr>
<tr>
<td>Acorn plum-gall</td>
<td>360</td>
</tr>
<tr>
<td>Adult Stage or Imago (of insects)</td>
<td>311</td>
</tr>
<tr>
<td>Ailanthus tree</td>
<td>339</td>
</tr>
<tr>
<td>Akers, Elizabeth</td>
<td>475, 477</td>
</tr>
<tr>
<td>Allen, A. A.</td>
<td>115, 117, 122, 123</td>
</tr>
<tr>
<td>Aldrich, Thomas Bailey</td>
<td>62</td>
</tr>
<tr>
<td>Allen, James Lane</td>
<td>133</td>
</tr>
<tr>
<td>Altenburger Cheese</td>
<td>278</td>
</tr>
<tr>
<td>Animal Life</td>
<td>25</td>
</tr>
<tr>
<td>Antennae</td>
<td>312, 314</td>
</tr>
<tr>
<td>Antennae of male mosquito</td>
<td>402</td>
</tr>
<tr>
<td>Antenna-comb on ant's leg</td>
<td>426, 434</td>
</tr>
<tr>
<td>Anthomyiæ</td>
<td>354</td>
</tr>
<tr>
<td>Ant-lion</td>
<td>395, 396</td>
</tr>
<tr>
<td>Aphids</td>
<td>392, 393, 394, 421</td>
</tr>
<tr>
<td>Aphid stable</td>
<td>421</td>
</tr>
<tr>
<td>Aphis-lion</td>
<td>397, 398, 399</td>
</tr>
<tr>
<td>Apple, just ready to spray</td>
<td>350</td>
</tr>
<tr>
<td>too late to spray</td>
<td>351</td>
</tr>
<tr>
<td>Aquarium, tadpole</td>
<td>185</td>
</tr>
<tr>
<td>Aquarium, how to make</td>
<td>380</td>
</tr>
<tr>
<td>for insects</td>
<td></td>
</tr>
<tr>
<td>for insects, how to make</td>
<td></td>
</tr>
<tr>
<td>Austin, Mary</td>
<td>281</td>
</tr>
<tr>
<td>Babcock Milk Tester</td>
<td>300</td>
</tr>
<tr>
<td>Bailey, Prof. L. H</td>
<td>38, 180, 189, 246</td>
</tr>
<tr>
<td>Bailey, Vernon</td>
<td>255</td>
</tr>
<tr>
<td>Baker, Ida</td>
<td>372</td>
</tr>
<tr>
<td>Ballard, Julia P</td>
<td>317, 323, 328, 334, 338, 343</td>
</tr>
<tr>
<td>Barb, (of feather)</td>
<td>27</td>
</tr>
<tr>
<td>Barbels, (of feather)</td>
<td>27, 154</td>
</tr>
<tr>
<td>Barker, Eugene</td>
<td>170</td>
</tr>
<tr>
<td>Baskett, J. N</td>
<td>64, 149, 167</td>
</tr>
<tr>
<td>Batrachian Study</td>
<td>181</td>
</tr>
<tr>
<td>Bat</td>
<td>245</td>
</tr>
<tr>
<td>Bee</td>
<td>18, 20</td>
</tr>
<tr>
<td>Bumble</td>
<td>21, 442, 444</td>
</tr>
<tr>
<td>Carpenter</td>
<td>439, 440</td>
</tr>
<tr>
<td>Carpenter nest of</td>
<td>441</td>
</tr>
<tr>
<td>drone</td>
<td>445, 446, 447, 448, 449, 450</td>
</tr>
<tr>
<td>Honey</td>
<td>445, 449</td>
</tr>
<tr>
<td>queen</td>
<td>445, 446, 447, 448, 449</td>
</tr>
<tr>
<td>Leaf-cutter worker</td>
<td>445, 446, 447, 448, 449</td>
</tr>
<tr>
<td>Beetle</td>
<td>61, 64, 310</td>
</tr>
<tr>
<td>Ground</td>
<td>92</td>
</tr>
<tr>
<td>Colorado Potato</td>
<td>409, 410, 411</td>
</tr>
<tr>
<td>Bect leaf-miners</td>
<td>88</td>
</tr>
<tr>
<td>Belgian Hares</td>
<td>216</td>
</tr>
<tr>
<td>Benefits of Nature-Study to Child</td>
<td>1</td>
</tr>
<tr>
<td>to Teachers</td>
<td>2</td>
</tr>
<tr>
<td>Birch</td>
<td></td>
</tr>
<tr>
<td>Birds</td>
<td></td>
</tr>
<tr>
<td>beaks</td>
<td>25</td>
</tr>
<tr>
<td>ears</td>
<td>37</td>
</tr>
<tr>
<td>eyes</td>
<td>36</td>
</tr>
<tr>
<td>feet</td>
<td>39</td>
</tr>
<tr>
<td>nostrils</td>
<td>37</td>
</tr>
<tr>
<td>Birds – Flight of</td>
<td>33</td>
</tr>
<tr>
<td>Bird houses</td>
<td>47, 60</td>
</tr>
<tr>
<td>Birds’ Nests</td>
<td>147</td>
</tr>
<tr>
<td>Bird, parts named</td>
<td>147</td>
</tr>
<tr>
<td>Bird Study</td>
<td>25</td>
</tr>
<tr>
<td>Blackbirds</td>
<td>130</td>
</tr>
<tr>
<td>red-winged</td>
<td>122, 123</td>
</tr>
<tr>
<td>Blanchan, Neltie</td>
<td>131, 142, 146</td>
</tr>
<tr>
<td>Bluebird</td>
<td>60, 61</td>
</tr>
<tr>
<td>Breathing pores of insect</td>
<td>314</td>
</tr>
<tr>
<td>Buchanan, H. B. M</td>
<td>294, 306</td>
</tr>
<tr>
<td>Buffalo</td>
<td>18, 205</td>
</tr>
<tr>
<td>Bull</td>
<td>295</td>
</tr>
<tr>
<td>Bullfrog</td>
<td>193</td>
</tr>
<tr>
<td>Bullhead</td>
<td>154, 155, 156</td>
</tr>
<tr>
<td>Burkett, W. B</td>
<td>286</td>
</tr>
<tr>
<td>Burroughs, John</td>
<td>72, 74, 76, 79</td>
</tr>
<tr>
<td>Butterfly—Black swallow-tail</td>
<td>315, 318</td>
</tr>
<tr>
<td>changing to chrysalis</td>
<td>317</td>
</tr>
<tr>
<td>scales on wing of</td>
<td>321</td>
</tr>
<tr>
<td>Cabbage</td>
<td>317</td>
</tr>
<tr>
<td>Monarch</td>
<td>320, 324</td>
</tr>
<tr>
<td>Viceroy</td>
<td>321, 322</td>
</tr>
<tr>
<td>Caddis-fly</td>
<td>387, 388, 389, 390</td>
</tr>
<tr>
<td>Caddis-worms cases of</td>
<td>387, 389, 390, 391</td>
</tr>
<tr>
<td>spiral ribbon</td>
<td>390, 391</td>
</tr>
<tr>
<td>with a grating of silk</td>
<td>389</td>
</tr>
<tr>
<td>Cage, bird</td>
<td>8</td>
</tr>
<tr>
<td>breeding</td>
<td>8</td>
</tr>
<tr>
<td>for crickets</td>
<td>375</td>
</tr>
<tr>
<td>Calves, dehorned</td>
<td>301</td>
</tr>
<tr>
<td>Camel</td>
<td>18</td>
</tr>
<tr>
<td>Canary</td>
<td>49</td>
</tr>
<tr>
<td>Canker-worms</td>
<td>92</td>
</tr>
<tr>
<td>Carapace (of turtle)</td>
<td>208</td>
</tr>
<tr>
<td>of crayfish</td>
<td>466</td>
</tr>
<tr>
<td>Caraway worms</td>
<td>319</td>
</tr>
<tr>
<td>Cardinal bird</td>
<td>31, 133</td>
</tr>
<tr>
<td>Carolina locusts</td>
<td>307</td>
</tr>
<tr>
<td>Carpenter, Edward</td>
<td>301</td>
</tr>
<tr>
<td>Carpenter bee</td>
<td>439, 440, 441</td>
</tr>
<tr>
<td>Carthusius commersoni</td>
<td>159</td>
</tr>
<tr>
<td>Cat-tail</td>
<td>18</td>
</tr>
<tr>
<td>Cat, the</td>
<td>56, 61, 208, 272</td>
</tr>
<tr>
<td>Catbird</td>
<td>98</td>
</tr>
<tr>
<td>Caterpillars</td>
<td>61, 64, 92, 308</td>
</tr>
<tr>
<td>Cabbage</td>
<td>88</td>
</tr>
<tr>
<td>Cecropia</td>
<td>331</td>
</tr>
<tr>
<td>cotton-boll</td>
<td>96</td>
</tr>
<tr>
<td>external anatomy of</td>
<td>314</td>
</tr>
<tr>
<td>Forest tent</td>
<td>308</td>
</tr>
<tr>
<td>Index</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Caterpillars—Milkweed or Monarch</td>
<td>322, 324</td>
</tr>
<tr>
<td>Myron sphinx</td>
<td>343</td>
</tr>
<tr>
<td>Myron sphinx parasitized</td>
<td>345</td>
</tr>
<tr>
<td>pro-legs, prop legs and true legs of</td>
<td>314</td>
</tr>
<tr>
<td>Promethca</td>
<td>337</td>
</tr>
<tr>
<td>shedding skin</td>
<td>308</td>
</tr>
<tr>
<td>skin of.</td>
<td>309</td>
</tr>
<tr>
<td>Caterpillars, swallow-tail</td>
<td>316</td>
</tr>
<tr>
<td>Viceroys in winter home</td>
<td>323</td>
</tr>
<tr>
<td>Woolly bear</td>
<td>327</td>
</tr>
<tr>
<td>Cattle</td>
<td>295, 298</td>
</tr>
<tr>
<td>Original American wild</td>
<td>295</td>
</tr>
<tr>
<td>Cayuga Basin</td>
<td>170</td>
</tr>
<tr>
<td>Cayuga Lake</td>
<td>158</td>
</tr>
<tr>
<td>Cecropia, caterpillar, molting</td>
<td>331</td>
</tr>
<tr>
<td>weaving cocoon</td>
<td>332</td>
</tr>
<tr>
<td>cocoon, cut open</td>
<td>333</td>
</tr>
<tr>
<td>moth</td>
<td>330, 334</td>
</tr>
<tr>
<td>Cedars</td>
<td>19</td>
</tr>
<tr>
<td>Chapman, Frank</td>
<td>51</td>
</tr>
<tr>
<td>Charles, Prof. Fred S.</td>
<td>254, 256, 260</td>
</tr>
<tr>
<td>Charts, use of</td>
<td>10</td>
</tr>
<tr>
<td>Cheese, Altenburger</td>
<td>278</td>
</tr>
<tr>
<td>Roquefort</td>
<td>278</td>
</tr>
<tr>
<td>Schweitzer</td>
<td>278</td>
</tr>
<tr>
<td>Chickadee</td>
<td>63, 66</td>
</tr>
<tr>
<td>Chickaree</td>
<td>233, 234, 236</td>
</tr>
<tr>
<td>Chick, the</td>
<td>41</td>
</tr>
<tr>
<td>Chicken ways</td>
<td>41</td>
</tr>
<tr>
<td>Chinch bug</td>
<td>82</td>
</tr>
<tr>
<td>Chipmunk</td>
<td>240, 241, 242</td>
</tr>
<tr>
<td>Chrysalis</td>
<td>309</td>
</tr>
<tr>
<td>of Monarch</td>
<td>322</td>
</tr>
<tr>
<td>Chub</td>
<td>163</td>
</tr>
<tr>
<td>Civil War</td>
<td>86</td>
</tr>
<tr>
<td>Claws of Cat</td>
<td>269</td>
</tr>
<tr>
<td>(of insects)</td>
<td>313</td>
</tr>
<tr>
<td>Clitellum, (of earthworm)</td>
<td>463</td>
</tr>
<tr>
<td>Cob-webs</td>
<td>475, 476</td>
</tr>
<tr>
<td>Cockroach</td>
<td>378, 379</td>
</tr>
<tr>
<td>laying case of eggs</td>
<td>379</td>
</tr>
<tr>
<td>Cocoon</td>
<td>309</td>
</tr>
<tr>
<td>of Cecropia</td>
<td>333</td>
</tr>
<tr>
<td>of Luna</td>
<td>309</td>
</tr>
<tr>
<td>of Promethea</td>
<td>336</td>
</tr>
<tr>
<td>of woolly bear</td>
<td>327</td>
</tr>
<tr>
<td>Codling Moth</td>
<td>347, 349</td>
</tr>
<tr>
<td>larva of</td>
<td>348</td>
</tr>
<tr>
<td>Collections of birds or insects</td>
<td>8</td>
</tr>
<tr>
<td>Colorado Potato Beetle</td>
<td>409, 410, 411, 412</td>
</tr>
<tr>
<td>larva of</td>
<td>410</td>
</tr>
<tr>
<td>Colt</td>
<td>289</td>
</tr>
<tr>
<td>Comstock, Prof. J. H.</td>
<td>45, 319</td>
</tr>
<tr>
<td>Coolbrith, Ina</td>
<td>83</td>
</tr>
<tr>
<td>Coon, a pet</td>
<td>254</td>
</tr>
<tr>
<td>tracks</td>
<td>250</td>
</tr>
<tr>
<td>Corn</td>
<td>85, 131</td>
</tr>
<tr>
<td>Corn-cracker, the red</td>
<td>133</td>
</tr>
<tr>
<td>Correlation of Nature-Study with:</td>
<td>19</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>17</td>
</tr>
<tr>
<td>Correlation of Nature-Study with: English</td>
<td>19</td>
</tr>
<tr>
<td>Geography</td>
<td>18</td>
</tr>
<tr>
<td>History</td>
<td>18</td>
</tr>
<tr>
<td>Language work</td>
<td>16</td>
</tr>
<tr>
<td>Cotton-tail rabbit</td>
<td>213, 218</td>
</tr>
<tr>
<td>Country Life in America</td>
<td>61</td>
</tr>
<tr>
<td>Coverts of feathers</td>
<td>44</td>
</tr>
<tr>
<td>Cow</td>
<td>295, 296, 298, 300, 301</td>
</tr>
<tr>
<td>care of milk</td>
<td>300</td>
</tr>
<tr>
<td>Cows as draft animals</td>
<td>298</td>
</tr>
<tr>
<td>Cow's stomach</td>
<td>296</td>
</tr>
<tr>
<td>Coxa (of insect)</td>
<td>314</td>
</tr>
<tr>
<td>Coyote, pet</td>
<td>256</td>
</tr>
<tr>
<td>Cray-fish</td>
<td>466, 468, 470</td>
</tr>
<tr>
<td>where it lurks</td>
<td>465</td>
</tr>
<tr>
<td>Crickets</td>
<td>311, 373, 375</td>
</tr>
<tr>
<td>Black male and female</td>
<td>372, 374</td>
</tr>
<tr>
<td>front leg</td>
<td>373</td>
</tr>
<tr>
<td>Snowy Tree</td>
<td>377, 378</td>
</tr>
<tr>
<td>wing covers of</td>
<td>374</td>
</tr>
<tr>
<td>Crosby, Prof. Cyrus</td>
<td>190</td>
</tr>
<tr>
<td>Croton bug</td>
<td>378</td>
</tr>
<tr>
<td>Crow, the</td>
<td>43, 46, 56, 129, 131</td>
</tr>
<tr>
<td>Crown of bird</td>
<td>44</td>
</tr>
<tr>
<td>Curelio of Plum</td>
<td>347</td>
</tr>
<tr>
<td>Cutworm</td>
<td>56, 82, 85, 92</td>
</tr>
<tr>
<td>Cynthia Moth</td>
<td>337</td>
</tr>
<tr>
<td>Dace</td>
<td>161</td>
</tr>
<tr>
<td>"Daddy Longlegs"</td>
<td>472, 474</td>
</tr>
<tr>
<td>Daisy</td>
<td>18</td>
</tr>
<tr>
<td>Damselflies</td>
<td>382, 383, 384</td>
</tr>
<tr>
<td>Dandelion</td>
<td>19</td>
</tr>
<tr>
<td>Davie, Oliver</td>
<td>98</td>
</tr>
<tr>
<td>Dawson, Dr.</td>
<td>133</td>
</tr>
<tr>
<td>Definition of Nature-Study</td>
<td>1</td>
</tr>
<tr>
<td>Devil's darning needle</td>
<td>382</td>
</tr>
<tr>
<td>Dew</td>
<td>479</td>
</tr>
<tr>
<td>Dickinson, Emily</td>
<td>200, 204</td>
</tr>
<tr>
<td>Dogs</td>
<td>261, 267</td>
</tr>
<tr>
<td>Dragon-flies</td>
<td>311, 382, 386</td>
</tr>
<tr>
<td>Drake, J. R.</td>
<td>97</td>
</tr>
<tr>
<td>Drawing and Nature-Study</td>
<td>13</td>
</tr>
<tr>
<td>Dryden, John</td>
<td>48</td>
</tr>
<tr>
<td>Duck, Rouen</td>
<td>31, 37, 39</td>
</tr>
<tr>
<td>Dugmore, A. R.</td>
<td>149, 147</td>
</tr>
<tr>
<td>Ears (of insects)</td>
<td>314, 365, 369, 373</td>
</tr>
<tr>
<td>Earthworms</td>
<td>26, 36, 462, 464</td>
</tr>
<tr>
<td>Eft or newt</td>
<td>197, 198, 199</td>
</tr>
<tr>
<td>Emerson, R. W.</td>
<td>44</td>
</tr>
<tr>
<td>Eohippus</td>
<td>286</td>
</tr>
<tr>
<td>Equipment for teaching Nature-Study</td>
<td>8</td>
</tr>
<tr>
<td>Excursions, field</td>
<td>13</td>
</tr>
<tr>
<td>Eyelid, film</td>
<td>36</td>
</tr>
<tr>
<td>Eyes, insects, compound</td>
<td>312, 314</td>
</tr>
<tr>
<td>simple</td>
<td>312</td>
</tr>
<tr>
<td>Feathers, as clothing</td>
<td>27</td>
</tr>
<tr>
<td>as ornament</td>
<td>30</td>
</tr>
<tr>
<td>form of</td>
<td>27</td>
</tr>
</tbody>
</table>
Handbook of Nature Study

<table>
<thead>
<tr>
<th>Page</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>133</td>
</tr>
<tr>
<td>33, 44</td>
<td>229, 230</td>
</tr>
<tr>
<td>33, 44</td>
<td>312</td>
</tr>
<tr>
<td>312, 313, 314</td>
<td>243</td>
</tr>
<tr>
<td>163</td>
<td>216</td>
</tr>
<tr>
<td>357, 53</td>
<td>216</td>
</tr>
<tr>
<td>267</td>
<td>36, 43, 46, 108, 109</td>
</tr>
<tr>
<td>177, 164</td>
<td>132</td>
</tr>
<tr>
<td>149</td>
<td>203, 224, 256</td>
</tr>
<tr>
<td>156</td>
<td>36, 37, 39, 41, 42, 43</td>
</tr>
<tr>
<td>149</td>
<td>213, 419</td>
</tr>
<tr>
<td>17</td>
<td>25, 27, 30, 33, 36, 37, 39, 41, 42, 43</td>
</tr>
<tr>
<td>17</td>
<td>213, 419</td>
</tr>
<tr>
<td>17</td>
<td>304, 305, 306</td>
</tr>
<tr>
<td>135</td>
<td>451, 452, 453</td>
</tr>
<tr>
<td>163</td>
<td>383</td>
</tr>
<tr>
<td>163</td>
<td>325</td>
</tr>
<tr>
<td>168, 170</td>
<td>286, 287, 288, 289, 290, 291, 292</td>
</tr>
<tr>
<td>168, 170</td>
<td>125</td>
</tr>
<tr>
<td>158, 160</td>
<td>103</td>
</tr>
<tr>
<td>172, 173, 174</td>
<td>380</td>
</tr>
<tr>
<td>250</td>
<td>290</td>
</tr>
<tr>
<td>84</td>
<td>111</td>
</tr>
<tr>
<td>81</td>
<td>120</td>
</tr>
<tr>
<td>255</td>
<td>310</td>
</tr>
<tr>
<td>255</td>
<td>308</td>
</tr>
<tr>
<td>78, 118, 119</td>
<td>313</td>
</tr>
<tr>
<td>21</td>
<td>313</td>
</tr>
<tr>
<td>405, 406, 407</td>
<td>313</td>
</tr>
<tr>
<td>295</td>
<td>311</td>
</tr>
<tr>
<td>224</td>
<td>308</td>
</tr>
<tr>
<td>84</td>
<td>249</td>
</tr>
<tr>
<td>286, 287, 288, 289, 290, 291, 292</td>
<td>453</td>
</tr>
<tr>
<td>286, 287, 288, 289, 290, 291, 292</td>
<td>453</td>
</tr>
<tr>
<td>190, 191</td>
<td>111</td>
</tr>
<tr>
<td>190, 191</td>
<td>23</td>
</tr>
<tr>
<td>45, 70, 73, 75, 80, 81, 94</td>
<td>304</td>
</tr>
<tr>
<td>238</td>
<td>177, 178</td>
</tr>
<tr>
<td>187, 192</td>
<td>149, 157, 160, 167, 168, 176, 177, 179, 217</td>
</tr>
<tr>
<td>198</td>
<td>431</td>
</tr>
<tr>
<td>135</td>
<td>23</td>
</tr>
<tr>
<td>360, 361, 362, 363, 364</td>
<td>369, 370, 371</td>
</tr>
<tr>
<td>360, 364</td>
<td>369, 370, 371</td>
</tr>
<tr>
<td>360, 364</td>
<td>369, 370, 371</td>
</tr>
<tr>
<td>8</td>
<td>133</td>
</tr>
<tr>
<td>10</td>
<td>101</td>
</tr>
<tr>
<td>136-142</td>
<td>313, 314</td>
</tr>
<tr>
<td>139, 140</td>
<td>313, 314</td>
</tr>
<tr>
<td>353</td>
<td>397, 398</td>
</tr>
<tr>
<td>18, 299</td>
<td>413, 414, 415</td>
</tr>
<tr>
<td>142</td>
<td>96</td>
</tr>
<tr>
<td>417</td>
<td>90, 93</td>
</tr>
<tr>
<td>473</td>
<td>308, 311</td>
</tr>
<tr>
<td>8, 18, 61, 82, 88, 92, 311, 312, 365, 366, 367, 368, 369</td>
<td>352, 353, 354</td>
</tr>
<tr>
<td>365</td>
<td>357, 358, 359</td>
</tr>
<tr>
<td>365</td>
<td>357, 358, 359</td>
</tr>
<tr>
<td>365</td>
<td>357, 358, 359</td>
</tr>
<tr>
<td>367-369</td>
<td>267</td>
</tr>
<tr>
<td>365</td>
<td>267</td>
</tr>
<tr>
<td>32</td>
<td>9</td>
</tr>
<tr>
<td>32</td>
<td>10</td>
</tr>
<tr>
<td>367-369</td>
<td>7</td>
</tr>
<tr>
<td>367-369</td>
<td>7</td>
</tr>
<tr>
<td>367-369</td>
<td>7</td>
</tr>
</tbody>
</table>
Index

Page

Living material in schoolroom 8
Longfellow, Henry W .. 2
Lowell, James Russell 17, 128, 153, 196, 382, 418
Lloyd, J. T. 114, 211, 387, 588, 389, 390
Lubbock, Sir John 423, 433

Maggots .. 308
Mamalian Study .. 212
Mandibles— insects ... 313, 314
Matheson, Robert ... 82, 98
Maxillae, insect ... 313, 314
May beetle ... 131, 418
Meadow lark .. 77, 80, 81, 82
Merriam, Dr. C. Hart .. 248
Mesothorax .. 313, 314
Metathorax ... 313, 314
Mice ... 224, 225, 226, 227
Milk ... 299
Minnows .. 163
Mitchell, Evelyn 401, 402
Metamorphosis, insect 311, 367
Mockingbird ... 94
Molting insects .. 308, 309
Morton, Verne—Photos by — Frontispiece, 164, 250, 242, 247, 271, 274
Mosquito .. 309, 400, 401, 402, 403
Moth, Cecropia ... 330, 331, 332, 333, 334
Cocoon ... 347, 349
Cynthia .. 337
Isabella tiger ... 326, 327, 328
Luna ... 309, 310, 330
Promethea .. 330, 336, 337, 338
Polyphemus .. 330
Sphinx ... 313, 314, 341, 342, 343, 344, 345, 346
Mouse, deer, or whitejooted 223, 225
Nape .. 18
Mullein ... 218, 220, 221
Muskrat .. 8
Nape, (of bird) .. 44
Nature-study clubs ... 22
Naylor ... 134
Needham, Dr. James G. 382, 383, 384, 385
Newt, red-spotted .. 197, 198, 199
Nuthatch, white-breasted 63, 64
Nymph ... 311
Of damsel-fly .. 384, 385
Of dragon-fly ... 384
Of red-legged grasshopper 366
Oak-apple .. 361
Ocelli (of insects) .. 312, 314
Oriole, Baltimore 125, 126, 127
Ovipositor (of insect) 314
Owl, screech ... 104
Oxen .. 298
Palpi, insect ... 313, 314
Partridge ... 39, 41
Peacock .. 39, 31, 32
Pears and apples, ready to spray 350
Peccaries ... 394
Pigs ... 15
Phoebe-bird .. 67
Pig, the ... 303, 305, 306
Pigeons ... 45, 46, 47
Pigeon houses .. 45, 47
Pine, the .. 73
Pine, the white .. 73
Plant-llice .. 92, 392, 393, 421
Plant Physiology ... 20
Pumpkin, seed (sunfish) 172
Pupae ... 309, 311
Of caddis fly .. 388
Of Codling Moth ... 349
Of firefly .. 417
Of Potato beetle ... 411
Of Ladybird .. 415
Of Mosquito .. 402
(jug handle) Tomato sphinx 342
Quail .. 41
Rabbit .. 213, 215, 216
Raccoon .. 203
Rattlesnake, The ... 203
Redbird .. 133
Red-winged blackbird .. 122, 123
Reighard, Professor .. 174, 175
Reptile Study ... 200
Rexford, Eden .. 61
Rice, Prof. J. E. .. 33
Rich, John ... 295
Riley, James Whitcomb 70, 201
Robin ... 54, 55, 57
Root, A. I. Co .. 456
Rossetti, Christina .. 326
Rowe, Mrs. F. W. ... 95
Salamander ... 197, 198, 199
Scales, on butterfly’s wing 421
Schreec Owl ... 104
Sheep ... 281, 283, 284, 285
Shepherd, a Sicilian .. 281
Shiner .. 161, 162
Silk-worm ... 312
American ... 310
Skunk ... 43, 247, 248
Snake .. 104
Garden .. 201, 202
Garter .. 201, 202
Milk ... 204
Rattle ... 203
Spotted Adder ... 204
Water ... 206
Snakedoctor	382
Snail, garden	458, 459
Sparrow-chipping	88, 89
Song	91
Spencer, John W.	16, 23
Spiders	475
Ballooning	484
White Crab	485
care of eggs	487, 488
Spider-webs, cobwebs	475
Filmy Dome	482, 483
funnel	477
Orb	478, 479, 481
Spraales, (of insects)	313, 314
Squirrel	56, 61, 233, 234, 236
Stetson, Charlotte Perkins	286
Stickelback	168
Sucker, common	158, 160
Sunfish	172, 173, 174
Swallows, the	112
Swett, S. H.	476
Swift, chimney	112
Tabb, John B.	29
Tadpoles	182, 183, 186
of frog	194
of toad	187
of tree-frog	191
aquarium for	185
Tanager, scarlet	31
Taylor, Bayard	376
Thaxter, Celia	132, 142
Thomas, Edith	100
Thompson, Maurice	63, 95, 133, 279
Thoreau, H. D.	91, 129
161, 205, 207, 232, 249	
Thrush family	57, 60
Titmouse, black-capped	66, 67, 68
Toad, common	181, 182, 183, 187
development of a season	187
eggs of	182, 186
tree	190, 191
Treadwell, Prof.	56
Trowbridge, J. T.	471
Trout	164, 167
Turkey, the	41, 143
Turtles	208, 209, 211
"Uncle John"	16, 23
U. S. Dept. of Agriculture	185, 221, 276, 278, 279, 301, 352, 411
Valley of Cashmere	279
Vampires	244
Van Dyke, Henry	80, 91
Virgil	48
Wadsworth	267
Walton, Isaac	149, 154
Wasp	429, 437
Jug-builder and nest	431
Mud-dauber	429, 430
Yellow Jacket	432, 434
Wasp-nest, with side removed	457
nest of carpenter	440
nest of mud-dauber	429
Yellow-jackets	432, 435
Wescas	43
Wheat	85
White, Gilbert	48
Whitman, Walt	484
Whittier, J. G.	104
Willow, cone-gall	362
Wister, Owen	277
Witch-hazel	356
Wolf, gray	255
Woodchuck or groundhog	229, 230
Woodpeckers, carpenter	75
Downy	69, 70
Hairy	69
Flicker, yellow hammer or golden-shafted	77, 80
Red-headed	75
Sapsucker	73
Woolly-bear	326, 327, 328
Wordsworth	329
Worms	308
Army	82
Canker	92
Caraway	319
Cut	82, 92
Earth	462
Glow	417
Wire	82, 417
Yellow bird	49
Yellow-jacket	432, 433